
Learning with Feature Evolvable Streams

Bo-Jian Hou Lijun Zhang Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing, 210023, China
{houbj,zhanglj,zhouzh}@lamda.nju.edu.cn

Abstract

Learning with streaming data has attracted much attention during the past few years.
Though most studies consider data stream with fixed features, in real practice the
features may be evolvable. For example, features of data gathered by limited-
lifespan sensors will change when these sensors are substituted by new ones. In
this paper, we propose a novel learning paradigm: Feature Evolvable Streaming
Learning where old features would vanish and new features would occur. Rather
than relying on only the current features, we attempt to recover the vanished
features and exploit it to improve performance. Specifically, we learn two models
from the recovered features and the current features, respectively. To benefit from
the recovered features, we develop two ensemble methods. In the first method,
we combine the predictions from two models and theoretically show that with the
assistance of old features, the performance on new features can be improved. In the
second approach, we dynamically select the best single prediction and establish a
better performance guarantee when the best model switches. Experiments on both
synthetic and real data validate the effectiveness of our proposal.

1 Introduction

In many real tasks, data are accumulated over time, and thus, learning with streaming data has attracted
much attention during the past few years. Many effective approaches have been developed, such
as hoeffding tree [7], Bayes tree [27], evolving granular neural network (eGNN) [17], Core Vector
Machine (CVM) [29], etc. Though these approaches are effective for certain scenarios, they have a
common assumption, i.e., the data stream comes with a fixed stable feature space. In other words,
the data samples are always described by the same set of features. Unfortunately, this assumption
does not hold in many streaming tasks. For example, for ecosystem protection one can deploy many
sensors in a reserve to collect data, where each sensor corresponds to an attribute/feature. Due to its
limited-lifespan, after some periods many sensors will wear out, whereas some new sensors can be
spread. Thus, features corresponding to the old sensors vanish while features corresponding to the
new sensors appear, and the learning algorithm needs to work well under such evolving environment.
Note that the ability of adapting to environmental change is one of the fundamental requirements for
learnware [37], where an important aspect is the ability of handling evolvable features.

A straightforward approach is to rely on the new features and learn a new model to use. However,
this solution suffers from some deficiencies. First, when new features just emerge, there are few data
samples described by these features, and thus, the training samples might be insufficient to train a
strong model. Second, the old model of vanished features is ignored, which is a big waste of our data
collection effort. To address these limitations, in this paper we propose a novel learning paradigm:
Feature Evolvable Streaming Learning (FESL). We formulate the problem based on a key observation:
in general features do not change in an arbitrary way; instead, there are some overlapping periods in
which both old and new features are available. Back to the ecosystem protection example, since the
lifespan of sensors is known to us, e.g., how long their battery will run out is a prior knowledge, we

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



usually spread a set of new sensors before the old ones wear out. Thus, the data stream arrives in a
way as shown in Figure 1, where in period T1, the original set of features are valid and at the end of
T1, period B1 appears, where the original set of features are still accessible, but some new features
are included; then in T2, the original set of features vanish, only the new features are valid but at the
end of T2, period B2 appears where newer features come. This process will repeat again and again.
Note that the T1 and T2 periods are usually long, whereas the B1 and B2 periods are short because,
as in the ecosystem protection example, the B1 and B2 periods are just used to switch the sensors
and we do not want to waste a lot of lifetime of sensors for such overlapping periods.

Feature Evolution

D
a

ta
 S

trea
m

in
g

Feature Set

𝑆1 𝑆2 𝑆3 …

data with 

feature set 𝑆1

data with feature set 𝑆1 and 𝑆2

data with

feature set 𝑆2

data with feature set 𝑆2 and 𝑆3

𝑇2

𝑇1

𝐵1

𝐵2

Figure 1: Illustration that how data stream comes.

In this paper, we propose to solve the FESL
problem by utilizing the overlapping period to
discover the relationship between the old and
new features, and exploiting the old model even
when only the new features are available. Specif-
ically, we try to learn a mapping from new fea-
tures to old features through the samples in the
overlapping period. In this way, we are able to
reconstruct old features from new ones and thus
the old model can still be applied. To benefit
from additional features, we develop two ensem-
ble methods, one is in a combination manner
and the other in a dynamic selection manner. In
the first method, we combine the predictions from two models and theoretically show that with the
assistance of old features, the performance on new features can be improved. In the second approach,
we dynamically select the best single prediction and establish a better performance guarantee when
the best model switches at an arbitrary time. Experiments on synthetic and real datasets validate the
effectiveness of our proposal.

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 presents
the formulation of FESL. Our proposed approaches with corresponding analyses are presented in
section 4. Section 5 reports experimental results. Finally, Section 6 concludes.

2 Related Work

Data stream mining contains several tasks, including classification, clustering, frequency counting,
and time series analysis. Our work is most related to the classification task and we can also solve
the regression problem. Existing techniques for data stream classification can be divided into two
categories, one only considers a single classifier and the other considers ensemble classifiers. For the
former, several methods origin from approaches such as decision tree [7], Bayesian classification [27],
neural networks [17], support vector machines [29], and k-nearest neighbour [1]. For the latter,
various ensemble methods have been proposed including Online Bagging & Boosting [22], Weighted
Ensemble Classifiers [30, 20], Adapted One-vs-All Decision Trees (OVA) [12] and Meta-knowledge
Ensemble [33]. For more details, please refer to [9, 10, 2, 6, 21]. These traditional streaming data
algorithms often assume that the data samples are described by the same set of features, while in
many real streaming tasks feature often changes. We want to emphasize that though concept-drift
happens in streaming data where the underlying data distribution changes over time [2, 10, 4], the
number of features in concept-drift never changes which is different from our problem. Most studies
correlated to features changing are focusing on feature selection and extraction [26, 35] and to the
best of our knowledge, none of them consider the evolving of feature set during the learning process.

Data stream mining is a hot research direction in the area of data mining while online learning [38, 14]
is a related topic from the area of machine learning. Yet online learning can also tackle the streaming
data problem since it assumes that the data come in a streaming way. Online learning has been
extensively studied under different settings, such as learning with experts [5] and online convex
optimization [13, 28]. There are strong theoretical guarantees for online learning, and it usually uses
regret or the number of mistakes to measure the performance of the learning procedure. However,
most of existing online learning algorithms are limited to the case that the feature set is fixed.
Other related topics involving multiple feature sets include multi-view learning [18, 19, 32], transfer
learning [23, 24] and incremental attribute learning [11]. Although both our approaches and multi-
view learning exploit the relation between different sets of features, there exists a fundamental

2



difference: multi-view learning assumes that every sample is described by multiple feature sets
simultaneously, whereas in FESL only few samples in the feature switching period have two sets
of features, and no matter how many periods there are, the switching part involves only two sets of
features. Transfer learning usually assumes that data are in batch mode, few of them consider the
streaming cases where data arrives sequentially and cannot be stored completely. One exception is
online transfer learning [34] in which data from both sets of features arrive sequentially. However,
they assume that all the feature spaces must appear simultaneously during the whole learning process
while such an assumption is not available in FESL. When it comes to incremental attribute learning,
old sets of features do not vanish or do not vanish entirely while in FESL, old ones will vanish
thoroughly when new sets of features come.

The most related work is [15], which also handles evolving features in streaming data. Different to
our setting where there are overlapping periods, [15] handles situations where there is no overlapping
period but there are overlapping features. Thus, the technical challenges and solutions are different.

3 Preliminaries
Feature Evolution

D
a
ta

 S
trea

m
in

g

Feature Space 𝑆1 Feature Space 𝑆2

𝐱1
𝑆1

…

𝐱𝑇1−𝐵
𝑆1

𝐱𝑇1−𝐵+1
𝑆1 𝐱𝑇1−𝐵+1

𝑆2

… …

𝐱𝑇1
𝑆1 𝐱𝑇1

𝑆2

𝐱𝑇1+1
𝑆2

…

𝐱𝑇1+𝑇2
𝑆2

𝑇1

𝐵

𝑇2

Figure 2: Specific illustration with one cycle.

We focus on both classification and regression
tasks. On each round of the learning process, the
algorithm observes an instance and gives its pre-
diction. After the prediction has been made, the
true label is revealed and the algorithm suffers
a loss which reflects the discrepancy between
the prediction and the groundtruth. We define
“feature space" in our paper by a set of features.
That the feature space changes means both the
underlying distribution of the feature set and the
number of features change. Consider the pro-
cess with three periods where in the first period
large amount of data stream come from the old
feature space; then in the second period named
as overlapping period, few of data come from
both the old and the new feature space; soon
afterwards in the third period, data stream only
come from the new feature space. We call this whole process a cycle. As can be seen from Figure 1,
each cycle merely includes two feature spaces. Thus, we only need to focus on one cycle and it is
easy to extend to the case with multiple cycles. Besides, we assume that the old features in one cycle
will vanish simultaneously by considering the example that in ecosystem protection, all the sensors
share the same expected lifespan and thus they will wear out at the same time. We will study the case
where old features do not vanish simultaneously in the future work.

Based on the above discussion, we only consider two feature spaces denoted by S1 and S2, respec-
tively. Suppose that in the overlapping period, there are B rounds of instances both from S1 and S2.
As can be seen from Figure 2, the process can be concluded as follows.

• For t = 1, . . . , T1 − B, in each round, the learner observes a vector xS1
t ∈ Rd1 sampled

from S1 where d1 is the number of features of S1, T1 is the number of total rounds in S1.
• For t = T1−B + 1, . . . , T1, in each round, the learner observes two vectors xS1

t ∈ Rd1 and
xS2
t ∈ Rd2 from S1 and S2, respectively where d2 is the number of features of S2.

• For t = T1 + 1, . . . , T1 + T2, in each round, the learner observes a vector xS2
t ∈ Rd2

sampled from S2 where T2 is the number of rounds in S2. Note that B is small, so we can
omit the streaming data from S2 on rounds T1−B + 1, . . . , T1 since they have minor effect
on training the model in S2.

We use ‖x‖ to denote the `2-norm of a vector x ∈ Rdi , i = 1, 2. The inner product is denoted by
〈·, ·〉. Let Ω1 ⊆ Rd1 and Ω2 ⊆ Rd2 be two sets of linear models that we are interested in. We define
the projection ΠΩi

(b) = argmina∈Ωi
‖a− b‖, i = 1, 2. We restrict our prediction function in i-th

feature space and t-th round to be linear which takes the form 〈wi,t, xSi
t 〉 where wi,t ∈ Rdi , i = 1, 2.

The loss function `(w>x, y) is convex in its first argument and in implementing algorithms, we use

3



Algorithm 1 Initialize
1: Initialize w1,1 ∈ Ω1 randomly, M1 = 0, and M2 = 0;
2: for t = 1, 2, . . . , T1 do
3: Receive xS1

t ∈ Rd1 and predict ft = w>1,txS1
t ∈ R; Receive the target yt ∈ R, and suffer loss `(ft, yt);

4: Update w1,t using (1) where τt = 1/
√
t;

5: if t > T1 −B then M1 = M1 + xS2
t xS2

t

>
andM2 = M2 + xS2

t xS1
t

>
;

6: M∗ = M−1
1 M2.

logistic loss for classification task, namely `(w>x, y) = (1/ ln 2) ln(1 + exp(−y(w>x))) and square
loss for regression task, namely `(w>x, y) = (y − w>x)2.

The most straightforward or baseline algorithm is to apply online gradient descent [38] on rounds
1, . . . , T1 with streaming data xS1

t , and invoke it again on rounds T1 + 1, . . . , T1 + T2 with streaming
data xS2

t . The models are updated according to (1), where τt is a varied step size:

wi,t+1 = ΠΩi

(
wi,t − τt∇`(w>i,tx

Si
t , yt)

)
, i = 1, 2. (1)

4 Our Proposed Approach

In this section, we first introduce the basic idea of the solution to FESL, then two different kinds of
approaches with the corresponding analyses are proposed.

The major limitation of the baseline algorithm mentioned above is that the model learned on rounds
1, . . . , T1 is ignored on rounds T1 + 1, . . . , T1 + T2. The reason is that from rounds t > T1, we
cannot observe data from feature space S1, and thus the model w1,T1 , which operates in S1, cannot
be used directly. To address this challenge, we assume there is a certain relationship ψ : Rd2 → Rd1
between the two feature spaces, and we try to discover it in the overlapping period. There are several
methods to learn a relationship between two sets of features including multivariate regression [16],
streaming multi-label learning [25], etc. In our setting, since the overlapping period is very short, it is
unrealistic to learn a complex relationship between the two spaces. Instead, we use a linear mapping
to approximate ψ. Assume the coefficient matrix of the linear mapping is M , then during rounds
T1 −B + 1, . . . , T1, the estimation of M can be based on least squares

min
M∈Rd2×d1

∑T1

t=T1−B+1
‖xS1
t −M>xS2

t ‖22.

The optimal solution M∗ to the above problem is given by

M∗ =

(
T1∑

t=T1−B+1

xS2
t xS2

t

>
)−1( T1∑

t=T1−B+1

xS2
t xS1

t

>
)
.

Then if we only observe an instance xS2
t ∈ Rd2 from S2, we can recover an instance in S1 by

ψ(xS2) ∈ Rd1 , to which w1,T1
can be applied. Based on this idea, we will make two changes to the

baseline algorithm:

• During rounds T1−B+1, . . . , T1, we will learn a relationship ψ from (xS1

T1−B+1, xS2

T1−B+1),
. . . , (xS1

T1
, xS2

T1
).

• From rounds t > T1, we will keep on updating w1,t using the recovered data ψ(xS2
t ) and

predict the target by utilizing the predictions of w1,t and w2,t.

In round t > T1, the learner can calculate two base predictions based on models w1,t and w2,t:
f1,t = w>1,t(ψ(xS2

t )) and f2,t = w>2,tx
S2
t . By utilizing the two base predictions in each round, we

propose two methods, both of which are able to follow the better base prediction empirically and
theoretically. The process to obtain the relationship mapping ψ and w1,T1

during rounds 1, . . . , T1

are concluded in Algorithm 1.

4



Algorithm 2 FESL-c(ombination)
1: Initialize ψ and w1,T1 during 1, . . . , T1 using Algorithm 1;
2: α1,T1 = α2,T1 = 1

2
;

3: Initialize w2,T1+1 randomly and w1,T1+1 by w1,T1 ;
4: for t = T1 + 1, T1 + 2, . . . , T1 + T2 do
5: Receive xS2

t ∈ RS2 and predict f1,t = w>1,t(ψ(xS2
t )) and f2,t = w>2,txS2

t ;
6: Predict p̂t ∈ R using (2), then receive the target yt ∈ R, and suffer loss `(p̂t, yt);
7: Update weights using (3) where η =

√
8(ln 2)/T2;

8: Update w1,t and w2,t using (4) and (1) respectively where τt = 1/
√
t− T1;

4.1 Weighted Combination

We first propose an ensemble method by combining predictions with weights based on exponential of
the cumulative loss [5]. The prediction at time t is the weighted average of all the base predictions:

p̂t = α1,tf1,t + α2,tf2,t (2)

where αi,t is the weight of the i-th base prediction. With the previous loss of each base model, we
can update the weights of the two base models as follows:

αi,t+1 =
αi,te

−η`(fi,t,yt)∑2
j=1 αj,te

−η`(fj,t,yt)
, i = 1, 2, (3)

where η is a tuned parameter. The updating rule of the weights shows that if the loss of one of
the models on previous round is large, then its weight will decrease in an exponential rate in next
round, which is reasonable and can derive a good theoretical result shown in Theorem 1. Algorithm 2
summarizes our first approach for FESL named as FESL-c(ombination). We first learn a model w1,T1

using online gradient descent on rounds 1, . . . , T1, during which, we also learn a relationship ψ for
t = T1 − B + 1, . . . , T1. For t = T1 + 1, . . . , T1 + T2, we learn a model w2,t on each round and
keep updating w1,t on the recovered data ψ(xS2

t ) showed in (4) where τt is a varied step size:

w1,t+1 = ΠΩi

(
w1,t − τt∇`(w>1,t(ψ(xS2

t )), yt)
)
. (4)

Then we combine the predictions of the two models by weights calculated in (3).

Analysis In this paragraph, we borrow the regret from online learning to measure the performance
of FESL-c. Specifically, we give a loss bound as follows which shows that the performance will be
improved with assistance of the old feature space. For the sake of soundness, we put the proof of our
theorems in the supplementary file. We define that LS1 and LS2 are two cumulative losses suffered
by base models on rounds T1 + 1, . . . , T1 + T2,

LS1 =

T1+T2∑
t=T1+1

`(f1,t, yt), L
S2 =

T1+T2∑
t=T1+1

`(f2,t, yt), (5)

and LS12 is the cumulative loss suffered by our methods: LS12 =
∑T1+T2

t=T1+1 `(p̂t, yt). Then we have:

Theorem 1. Assume that the loss function ` is convex in its first argument and that it takes value
in [0,1]. For all T2 > 1 and for all yt ∈ Y with t = T1 + 1, . . . , T1 + T2, LS12 with parameter
ηt =

√
8(ln 2)/T2 satisfies

LS12 ≤ min(LS1 , LS2) +
√

(T2/2) ln 2 (6)

This theorem implies that the cumulative loss LS12 of Algorithm 2 over rounds T1 + 1, . . . , T1 + T2

is comparable to the minimum of LS1 and LS2 . Furthermore, we define C =
√

(T2/2) ln 2. If
LS2 − LS1 > C, it is easy to verify that LS12 is smaller than LS2 . In summary, on rounds T1 +
1, . . . , T1 + T2, when w1,t is better than w2,t to certain degree, the model with assistance from S1 is
better than that without assistance.

5



Algorithm 3 FESL-s(election)
1: Initialize ψ and w1,T1 during 1, . . . , T1 using Algorithm 1;
2: α1,T1 = α2,T1 = 1

2
;

3: Initialize w2,T1+1 randomly and w1,T1+1 by w1,T1 ;
4: for t = T1 + 1, T1 + 2, . . . , T1 + T2 do
5: Receive xS2

t ∈ RS2 and predict f1,t = w>1,t(ψ(xS2
t )) and f2,t = w>2,txS2

t ;
6: Draw a model wi,t according to the distribution (7) and predict p̂t = fi,t according to the model;
7: Receive the target yt ∈ R, and suffer loss `(p̂t, yt); Update the weights using (8);
8: Update w1,t and w2,t using (4) and (1) respectively, where τt = 1/

√
t− T1.

4.2 Dynamic Selection

The combination approach mentioned in the above subsection combines several base models to
improve the overall performance. Generally, combination of several classifiers performs better than
selecting only one single classifier [36]. However, it requires that the performance of base models
should not be too bad, for example, in Adaboost the accuracy of the base classifiers should be no less
than 0.5 [8]. Nevertheless, in our FESL problem, on rounds T1 + 1, . . . , T1 + T2, w2,t cannot satisfy
the requirement in the beginning due to insufficient training data and w1,t may become worse when
more and more data come causing a cumulation of recovered error. Thus, it may not be appropriate to
combine the two models all the time, whereas dynamically selecting the best single may be a better
choice. Hence we propose a method based on a new strategy, i.e., dynamic selection, similar to the
Dynamic Classifier Selection [36] which only uses the best single model rather than combining both
of them in each round. Note that, though we only select one of the models, we retain and utilize both
of them to update their weights. So it is still an ensemble method. The basic idea of dynamic selection
is to select the model of larger weight with higher probability. Algorithm 3 summarizes our second
approach for FESL named as FESL-s(election). Specifically, the steps in Algorithm 3 on rounds
1, . . . , T1 is the same as that in Algorithm 2. For t = T1 + 1, . . . , T1 + T2, we still update weights
of each model. However, when doing prediction, we do not combine all the models’ prediction, we
adopt the result of the “best" model’s according to the distribution of their weights

pi,t =
αi,t−1∑2
j=1 αj,t−1

i = 1, 2. (7)

To track the best model, we have a different way of updating weights which is given as follows [5].

vi,t = αi,t−1e
−η`(fi,t,yt), i = 1, 2, αi,t = δ

Wt

2
+ (1− δ)vi,t, i = 1, 2, (8)

where we define Wt = v1,t + v2,t, δ = 1/(T2 − 1), η =
√

8/T2 (2 ln 2 + (T2 − 1)H(1/(T2 − 1)))
and H(x) = −x lnx− (1− x) ln(1− x) is the binary entropy function defined for x ∈ (0, 1).

Analysis From rounds t > T1, the first model w1,t would become worse due to the cumulative
recovered error while the second model will become better by the large amount of coming data. Since
w1,t is initialized by w1,T1 which is learnt from the old feature space and w2,t is initialized randomly,
it is reasonable to assume that w1,t is better than w2,t in the beginning, but inferior to w2,t after
sufficient large number of rounds. Let s be the round after which w1,t is worse than w2,t. We define
Ls =

∑s
t=T1+1 `(f1,t, yt) +

∑T2

t=s+1 `(f2,t, yt), we can verify that

min
T1+1≤s≤T1+T2

Ls ≤ min
i=1,2

LSi . (9)

Then a more ambitious goal is to compare the proposed algorithm against w1,t from rounds T1 + 1
to s, and against the w2,t from rounds s to T1 + T2, which motivates us to study the following
performance measure LS12 − Ls. Because the exact value of s is generally unknown, we need to
bound the worst-case LS12 −minT1+1≤s≤T1+T2

Ls. An upper bound of LS12 is given as follows.
Theorem 2. For all T2 > 1, if the model is run with parameter δ = 1/(T2 − 1) and η =√

8/T2 (2 ln 2 + (T2 − 1)H(1/T2 − 1)), then

LS12 ≤ min
T1+1≤s≤T1+T2

Ls +

√
T2

2

(
2 ln 2 +

H(δ)

δ

)
(10)

where H(x) = −x lnx− (1− x) ln(1− x) is the binary entropy function.

6



Table 1: Detail description of datasets: let n be the number of examples, and d1 and d2 denote the dimensionality
of the first and second feature space, respectively. The first 9 datasets in the left column are synthetic datasets,
“r.EN-GR" means the dataset EN-GR comes from Reuter and “RFID" is the real dataset.

Dataset n d1 d2 Dataset n d1 d2 Dataset n d1 d2

Australian 690 42 29 r.EN-FR 18,758 21,531 24,892 r.GR-IT 29,953 34,279 15,505
Credit-a 653 15 10 r.EN-GR 18,758 21,531 34,215 r.GR-SP 29,953 34,279 11,547
Credit-g 1,000 20 14 r.EN-IT 18,758 21,531 15,506 r.IT-EN 24,039 15,506 21,517
Diabetes 768 8 5 r.EN-SP 18,758 21,531 11,547 r.IT-FR 24,039 15,506 24,892
DNA 940 180 125 r.FR-EN 26,648 24,893 21,531 r.IT-GR 24,039 15,506 34,278
German 1,000 59 41 r.FR-GR 26,648 24,893 34,287 r.IT-SP 24,039 15,506 11,547
Kr-vs-kp 3,196 36 25 r.FR-IT 26,648 24,893 15,503 r.SP-EN 12,342 11,547 21,530
Splice 3,175 60 42 r.FR-SP 26,648 24,893 11,547 r.SP-FR 12,342 11,547 24,892
Svmguide3 1,284 22 15 r.GR-EN 29,953 34,279 21,531 r.SP-GR 12,342 11,547 34,262
RFID 940 78 72 r.GR-FR 29,953 34,279 24,892 r.SP-IT 12,342 11,547 15,500

According to Theorem 2 we know that LS12 is comparable to minT1+1≤s≤T1+T2
Ls. Due to (9), we

can conclude that the upper bound of LS12 in Algorithm 3 is tighter than that of Algorithm 2.

5 Experiments

In this section, we first introduce the datasets we use. We want to emphasize that we collected one
real dataset by ourselves since our setting of feature evolving is relatively novel so that the required
datasets are not widely available yet. Then we introduce the compared methods and settings. Finally
experiment results are given.

5.1 Datasets

We conduct our experiments on 30 datasets consisting of 9 synthetic datasets, 20 Reuter datasets and
1 real dataset. To generate synthetic data, we randomly choose some datasets from different domains
including economy and biology, etc1 whose scales vary from 690 to 3,196. They only have one
feature space at first. We artificially map the original datasets into another feature space by random
Gaussian matrices, then we have data both from feature space S1 and S2. Since the original data are
in batch mode, we manually make them come sequentially. In this way, synthetic data are completely
generated. We also conduct our experiments on 20 datasets from Reuter [3]. They are multi-view
datasets which have large scale varying from 12,342 to 29,963. Each dataset has two views which
represent two different kinds of languages, respectively. We regard the two views as the two feature
spaces. Now they do have two feature spaces but the original data are in batch mode, so we will
artificially make them come in streaming way.

We use the RFID technique to collect the real data which contain 450 instances from S1 and S2

respectively. RFID technique is widely used to do moving goods detection [31]. In our case, we want
to utilize the RFID technique to predict the location’s coordinate of the moving goods attached by
RFID tags. Concretely, we arranged several RFID aerials around the indoor area. In each round, each
RFID aerial received the tag signals, then the goods with tag moved, at the same time, we recorded
the goods’ coordinate. Before the aerials expired, we arranged new aerials beside the old ones to
avoid the situation without aerials. So in this overlapping period, we have data from both old and new
feature spaces. After the old aerials expired, we continue to use the new ones to receive signals. Then
we only have data from feature space S2. So the RFID data we collect totally satisfy our assumptions.
The details of all the datasets we use are presented in Table 1.

5.2 Compared Approaches and Settings

We compare our FESL-c and FESL-s with three approaches. One is mentioned in Section 3, where
once the feature space changed, the online gradient descent algorithm will be invoked from scratch,
named as NOGD (Naive Online Gradient Descent). The other two approaches utilize the model
learned from feature space S1 by online gradient descent to do predictions on the recovered data. The

1Datasets can be found in http://archive.ics.uci.edu/ml/.

7



70 139 208 277

Time

0.06

0.08

0.10

0.12

0.14

Lo
ss

(a) australian

66 131 196 261 326

Time

0.4

0.6

0.8

1.0

1.2

Lo
ss

(b) credit-a

101 201 301 401

Time

1

2

3

4

Lo
ss

(c) credit-g

77 153 229 305 381

Time

0.7

0.8

0.9

1.0

Lo
ss

(d) diabetes

376 751 1126 1501

Time

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

(e) r.EN-SP

533 1065 1597 2129 2661

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

(f) r.FR-SP

600 1199 1798 2397

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

(g) r.GR-EN

481 961 1441 1921 2401

Time

0.2

0.4

0.6

0.8

Lo
ss

(h) r.IT-FR

91 181 271 361

Time

1.0

1.5

2.0

2.5

3.0

Lo
ss

(i) RFID legend

Figure 3: The trend of loss with three baseline methods and the proposed methods on synthetic data. The smaller
the cumulative loss, the better. All the average cumulative loss at any time of our methods is comparable to the
best of baseline methods and 8 of 9 are smaller.

difference between them is that one keeps updating with the recovered data while the other does not.
The one which keeps updating is called Updating Recovered Online Gradient Descent (ROGD-u)
and the other which keeps fixed is called Fixed Recovered Online Gradient Descent (ROGD-f). We
evaluate the empirical performances of the proposed approaches on classification and regression tasks
on rounds T1 + 1, . . . , T1 + T2. To verify that our analysis is reasonable, we present the trend of
average cumulative loss. Concretely, at each time t′, the loss ¯̀

t′ of every method is the average of
the cumulative loss over 1, . . . , t′, namely ¯̀

t′ = (1/t′)
∑t′

t=1 `t. We also present the classification
performance over all instances on rounds T1 + 1, . . . , T1 + T2 on synthetic and Reuter data. The
performances of all approaches are obtained by average results over 10 independent runs on synthetic
data. Due to the large scale of Reuter data, we only conduct 3 independent runs on Reuter data and
report the average results.

The parameters we need to set are the number of instances in overlapping period, i.e., B, the number
of instances in S1 and S2, i.e., T1 and T2 and the step size, i.e., τt where t is time. For all baseline
methods and our methods, the parameters are the same. In our experiments, we set B 5 or 10 for
synthetic data, 50 for Reuter data and 40 for RFID data. We set almost T1 and T2 to be half of the
number of instances, and τt to be 1/(c

√
t) where c is searched in the range {1, 10, 50, 100, 150}.

The detailed setting of c in τt for each dataset is presented in supplementary file.

5.3 Results

Here we only present part of the loss trend results, and other results are presented in the supplementary
file. Figure 3 gives the trend of average cumulative loss. (a-d) are the results on synthetic data, (e-h)
are the results on Reuter data, (i) is the result of the real data. The smaller the average cumulative loss,
the better. From the experimental results, we have the following observations. First, all the curves
with circle marks representing NOGD decrease rapidly which conforms to the fact that NOGD on
rounds T1 + 1, . . . , T1 + T2 becomes better and better with more and more data coming. Besides,
the curves with star marks representing ROGD-u also decline but not very apparent since on rounds
1, . . . , T1, ROGD-u already learned well and tend to converge, so updating with more recovered data
could not bring too much benefits. Moreover, the curves with plus marks representing ROGD-f does
not drop down but even go up instead, which is also reasonable because it is fixed and if there are some
recovering errors, it will perform worse. Lastly, our methods are based on NOGD and ROGD-u, so
their average cumulative losses also decrease. As can be seen from Figure 3, the average cumulative
losses of our methods are comparable to the best of baseline methods on all datasets and are smaller
than them on 8 datasets. And FESL-s exhibits slightly smaller average cumulative loss than FESL-c.
You may notice that NOGD is always worse than ROGD-u on synthetic data and real data while on
Reuter data NOGD becomes better than ROGD-u after a few rounds. This is because on synthetic data
and real data, we do not have enough rounds to let all methods converge while on Reuter data, large
amounts of instances ensure the convergence of every method. So when all the methods converge, we
can see that NOGD is better than other baseline methods since it always receives the real instances
while ROGD-u and ROGD-f receive the recovered instances which may contain recovered error. As
can be seen from (e-h), in the first few rounds, our methods are comparable to ROGD-u. When
NOGD is better than ROGD-u, our methods are comparable to NOGD which shows that our methods

8



Table 2: Accuracy with its variance on synthetic datasets and Reuter datasets. The larger the better. The best
ones among all the methods are bold.

Dataset NOGD ROGD-u ROGD-f FESL-c FESL-s
australian .767±.009 .849±.009 .809±.025 .849±.009 .849±.009
credit-a .811±.006 .826±.018 .785±.051 .827±.014 .831±.009
credit-g .659±.010 .733±.006 .716±.011 .733±.006 .733±.006
diabetes .650±.002 .652±.009 .651±.006 .652±.007 .652±.009
dna .610±.013 .691±.023 .608±.064 .691±.023 .692±.021
german .684±.006 .700±.002 .700±.002 .700±.001 .703±.004
kr-vs-kp .612±.005 .621±.036 .538±.024 .626±.028 .630±.016
splice .568±.005 .612±.022 .567±.057 .612±.022 .612±.022
svmguide3 .680±.010 .779±.010 .748±.012 .779±.010 .778±.010
r.EN-FR .902±.004 .849±.003 .769±.069 .903±.003 .902±.005
r.EN-GR .867±.005 .836±.007 .802±.036 .870±.002 .870±.003
r.EN-IT .858±.014 .847±.014 .831±.018 .861±.010 .863±.013
r.EN-SP .900±.002 .848±.002 .825±.001 .901±.001 .899±.002
r.FR-EN .858±.007 .776±.009 .754±.012 .858±.007 .858±.007
r.FR-GR .869±.004 .774±.019 .753±.021 .870±.004 .868±.003
r.FR-IT .874±.005 .780±.022 .744±.040 .874±.005 .873±.005
r.FR-SP .872±.001 .778±.022 .735±.013 .872±.001 .871±.002
r.GR-EN .907±.000 .850±.007 .801±.035 .907±.001 .906±.000
r.GR-FR .898±.001 .827±.009 .802±.023 .898±.001 .898±.000
r.GR-IT .847±.011 .851±.017 .816±.006 .850±.018 .851±.017
r.GR-SP .902±.001 .845±.003 .797±.012 .902±.001 .902±.001
r.IT-EN .854±.003 .760±.006 .730±.024 .856±.002 .854±.003
r.IT-FR .863±.002 .753±.012 .730±.020 .864±.002 .862±.003
r.IT-GR .849±.004 .736±.022 .702±.012 .849±.004 .846±.004
r.IT-SP .839±.006 .753±.014 .726±.005 .839±.007 .839±.006
r.SP-EN .926±.002 .860±.005 .814±.021 .926±.002 .924±.001
r.SP-FR .876±.005 .873±.017 .833±.042 .876±.014 .878±.012
r.SP-GR .871±.013 .827±.025 .810±.026 .873±.013 .873±.013
r.SP-IT .928±.002 .861±.005 .826±.005 .928±.003 .927±.002

are comparable to the best one all the time. Moreover, FESL-s performs worse than FESL-c in the
beginning while afterwards, it becomes slightly better than FESL-c.

Table 2 shows the accuracy results on synthetic datasets and Reuter datasets. We can see that for
synthetic datasets, FESL-s outperforms other methods on 8 datasets, FESL-c gets the best on 5
datasets and ROGD-u also gets 5. NOGD performs worst since it starts from scratch. ROGD-u is
better than NOGD and ROGD-f because ROGD-u exploits the old better trained model from old
feature space and keep updating with recovered instances. Our two methods are based on NOGD
and ROGD-u. We can see that our methods can follow the best baseline method or even outperform
it. For Reuter datasets, we can see that FESL-c outperforms other methods on 17 datasets, FESL-s
gets the best on 9 datasets and NOGD gets 8 while ROGD-u gets 1. In Reuter datasets, the period
on new feature space is longer than that in synthetic datasets so that NOGD can update itself to a
good model. Whereas ROGD-u updates itself with recovered data, so the model will become worse
when recovered error accumulates. ROGD-f does not update itself, thus it performs worst. Our two
methods can take the advantage of NOGD and ROGD-f and perform better than them.

6 Conclusion

In this paper, we focus on a new setting: feature evolvable streaming learning. Our key observation is
that in learning with streaming data, old features could vanish and new ones could occur. To make
the problem tractable, we assume there is an overlapping period that contains samples from both
feature spaces. Then, we learn a mapping from new features to old features, and in this way both
the new and old models can be used for prediction. In our first approach FESL-c, we ensemble two
predictions by learning weights adaptively. Theoretical results show that the assistance of the old
feature space can improve the performance of learning with streaming data. Furthermore, we propose
FESL-s to dynamically select the best model with better performance guarantee.

9



Acknowledgement This research was supported by NSFC (61333014, 61603177), JiangsuSF
(BK20160658), Huawei Fund (YBN2017030027) and Collaborative Innovation Center of Novel
Software Technology and Industrialization.

References
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for on-demand classification of evolving data

streams. IEEE Transactions on Knowledge and Data Engineering, 18:577–589, 2006.

[2] C. C. Aggarwal. Data streams: An overview and scientific applications. In Scientific Data Mining and
Knowledge Discovery - Principles and Foundations, pages 377–397. Springer, 2010.

[3] M.-R. Amini, N. Usunier, and C. Goutte. Learning from multiple partially observed views - an application
to multilingual text categorization. In Advances in Neural Information Processing Systems 22, pages 28–36,
2009.

[4] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive online analysis. Journal of Machine
Learning Research, 11:1601–1604, 2010.

[5] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

[6] J. de Andrade Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. de Carvalho, and J. Gama. Data
stream clustering: A survey. ACM Computing Surveys, 46:13:1–13:31, 2013.

[7] P. M. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 71–80, 2000.

[8] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[9] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy. Mining data streams: A review. SIGMOD Record,
34:18–26, 2005.

[10] J. Gama and P. P. Rodrigues. An overview on mining data streams. In Foundations of Computational
Intelligence, pages 29–45. Springer, 2009.

[11] S. U. Guan and S. Li. Incremental learning with respect to new incoming input attributes. Neural Processing
Letters, 14:241–260, 2001.

[12] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. R. Kangavari. Adapted one-versus-all decision trees for
data stream classification. IEEE Transactions on Knowledge and Data Engineering, 21:624–637, 2009.

[13] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. Maching
Learning, 69:169–192, 2007.

[14] S. Hoi, J. Wang, and P. Zhao. LIBOL: A library for online learning algorithms. Journal of Machine
Learning Research, 15:495–499, 2014.

[15] C. Hou and Z.-H. Zhou. One-pass learning with incremental and decremental features. ArXiv e-prints,
arXiv:1605.09082, 2016.

[16] B. M. Golam Kibria. Bayesian statistics and marketing. Technometrics, 49:230, 2007.

[17] D. Leite, P. Costa Jr., and F. Gomide. Evolving granular classification neural networks. In Proceedings of
International Joint Conference on Neural Networks 2009, pages 1736–1743, 2009.

[18] S.-Y. Li, Y. Jiang, and Z.-H. Zhou. Partial multi-view clustering. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 1968–1974, 2014.

[19] I. Muslea, S. Minton, and C. Knoblock. Active + semi-supervised learning = robust multi-view learning.
In Proceedings of the 19th International Conference on Machine Learning, pages 435–442, 2002.

[20] H.-L. Nguyen, Y.-K. Woon, W. K. Ng, and L. Wan. Heterogeneous ensemble for feature drifts in data
streams. In Proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 1–12, 2012.

[21] H.-L. Nguyen, Y.-K. Woon, and W. K. Ng. A survey on data stream clustering and classification. Knowledge
and Information Systems, 45:535–569, 2015.

10



[22] N. C. Oza. Online bagging and boosting. In Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics 2005, pages 2340–2345, 2005.

[23] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering, 22:1345–1359, 2010.

[24] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: Transfer learning from unlabeled
data. In Proceedings of the 24th International Conference on Machine Learning, pages 759–766, 2007.

[25] J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Streaming multi-label classification. In Proceedings of
the 2nd Workshop on Applications of Pattern Analysis, pages 19–25, 2011.

[26] K. Samina, K. Tehmina, and N. Shamila. A survey of feature selection and feature extraction techniques in
machine learning. In Proceedings of Science and Information Conference 2014, pages 372–378, 2014.

[27] T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann. Indexing density models for incremental
learning and anytime classification on data streams. In Proceedings of the 12th International Conference on
Extending Database Technology, pages 311–322, 2009.

[28] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine
Learning, 4:107–194, 2012.

[29] I. W. Tsang, A. Kocsor, and J. T. Kwok. Simpler core vector machines with enclosing balls. In Proceedings
of the 24th International Conference on Machine Learning, pages 911–918, 2007.

[30] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 226–235, 2003.

[31] C. Wang, L. Xie, W. Wang, T. Xue, and S. Lu. Moving tag detection via physical layer analysis for
large-scale RFID systems. In Proceedings of the 35th Annual IEEE International Conference on Computer
Communications, pages 1–9, 2016.

[32] C. Xu, D. Tao, and C. Xu. A survey on multi-view learning. ArXiv e-prints, arXiv:1304.5634, 2013.

[33] P. Zhang, J. Li, P. Wang, B. J. Gao, X. Zhu, and L. Guo. Enabling fast prediction for ensemble models on
data streams. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 177–185, 2011.

[34] P. Zhao, S. Hoi, J. Wang, and B. Li. Online transfer learning. Artificial Intelligence, 216:76–102, 2014.

[35] G. Zhou, K. Sohn, and H. Lee. Online incremental feature learning with denoising autoencoders. In
Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, pages 1453–1461,
2012.

[36] Z.-H. Zhou. Ensemble methods: Foundations and algorithms. CRC press, 2012.

[37] Z.-H. Zhou. Learnware: On the future of machine learning. Frontiers of Computer Science, 10:589–590,
2016.

[38] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning, pages 928–936, 2003.

11


	Introduction
	Related Work
	Preliminaries
	Our Proposed Approach
	Weighted Combination
	Dynamic Selection

	Experiments
	Datasets
	Compared Approaches and Settings
	Results

	Conclusion

