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Abstract

Background: Alzheimer’s disease (AD) is a complex neurodegenerative disorder that
has impacted millions of people worldwide. Identifying different risk groups converting
to AD during the mild cognitive impairment (MCI) stage and determining their
genetic basis would be immensely valuable for drug discovery and subsequent clinical
treatment. Previous studies typically clustered subgroups by unsupervised learning
techniques, neglecting the survival information. To address this problem, we propose
an interpretable survival analysis method called Deep Clustering Survival Machines
(DCSM), which performs clustering and risk prediction simultaneously.

Method: Our proposed DCSM is a hybrid survival analysis method that integrates the
advantages of the discriminative and generative ideas and employ the mixture of expert
distributions to fit the final survival function by maximum likelihood estimation. For the
real data analysis, we use positron emission tomography (PET) from the ADNI dataset
as feature. The survival information includes whether the patients convert from MCI
to AD and the corresponding time. Our DCSM model predicts the risk of each patient
and clusters the patients into two groups based on their risk simultaneously.

Result: We first evaluate time-to-event prediction performance by Concordance
Index which is shown in Table 1 where our model outperforms the other baselines.
Besides, we use the LogRank to evaluate the clustering performance. The difference
in survival between two risk groups as shown in Kaplan-Meier plots in Figure 2(h)
is significantly larger than other baselines. Furthermore, to biologically validate our
clustering findings, we carry out targeted genetic association analyses (Figure 3(a)).
There are numerous targeted SNPs discovered when comparing high-risk group to

low-risk group and normal group. Figure 3(b) illustrates the important brain regions
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for the high-risk group. We highlight the top ten important regions which is consistent

with the conventional brain-AD relation findings.

Conclusion: Our DCSM model builds a good bridge between the imaging modality

and survival information. We demonstrate the superiority of the DCSM by applying

this approach to cluster patients with MCI into subgroups with different risks of

converting to AD. Conventional clustering measurements for survival analysis along

with genetic association studies successfully validate the effectiveness of our method

and characterize our clustering findings.

Tab.1: Concordance Index (C-Index) results comparison between KMeans, Cox, Deep Cox,
DSM, SCA, VaDeSC, NSC and DCSM on PET data.

Dee DCSM
Methods | Cox PH P DSM SCA VaDeSC NSC
Cox (ours)
C-Index | 0.69+0.06 | 0.77+0.03 | 0.75+0.03 | 0.662+0.10 | 0.41+0.03 | 0.72+0.05 | 0.78+0.04
LogRank: 30.47 LogRank: 122.63 LogRank: 118.81 LogRank: 159.61
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Fig.2: The Kaplan-Meier plots of KMeans, Cox PH, Deep Cox, DSM, DCSM, SCA, VaDeSC
on PET data. The cross mark on the curve means censoring. Cluster 0 means low-risk
group while Cluster 1 means high-risk group.
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(a) Targeted genetic association results
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(b) Brain heat map

Fig.3: (a) Targeted genetic association results of DCSM. (b) Brain heat map of PET data

using the coefficient of our DCSM model.
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