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Abstract

In the United States, primary open-angle glaucoma (POAG) is the leading cause of blindness, especially among
African American and Hispanic individuals. Deep learning has been widely used to detect POAG using fundus im-
ages as its performance is comparable to or even surpasses diagnosis by clinicians. However, human bias in clinical
diagnosis may be reflected and amplified in the widely-used deep learning models, thus impacting their performance.
Biases may cause (1) underdiagnosis, increasing the risks of delayed or inadequate treatment, and (2) overdiagnosis,
which may increase individuals’ stress, fear, well-being, and unnecessary/costly treatment. In this study, we exam-
ined the underdiagnosis and overdiagnosis when applying deep learning in POAG detection based on the Ocular
Hypertension Treatment Study (OHTS) from 22 centers across 16 states in the United States. Our results show that
the widely-used deep learning model can underdiagnose or overdiagnose under-served populations. The most un-
derdiagnosed group is female younger (< 60 yrs) group, and the most overdiagnosed group is Black older (≥ 60
yrs) group. Biased diagnosis through traditional deep learning methods may delay disease detection, treatment and
create burdens among under-served populations, thereby, raising ethical concerns about using deep learning models
in ophthalmology clinics.

1 Introduction

Primary open-angle glaucoma (POAG) is one of the leading causes of blindness in the US and worldwide.1 It has been
projected to affect approximately 111.8 million people by 2040. Among these patients, 5.3 million may be bilaterally
blind.2 In the United States, POAG is the most common form of glaucoma and is the leading cause of blindness among
Black and Hispanic individuals.3, 4 POAG is asymptomatic until it reaches an advanced stage whereby peripheral
visual field loss encroaches on central vision. However, early detection and treatment can avoid most blindness
caused by POAG.5 Therefore, timely identification of individuals with glaucoma is critical to guide medical and
surgical treatments and patient monitoring.6, 7 Detecting POAG is crucial, yet challenging, due to the high demands
on screening and experiences of ophthalmologists.8 Fundus photography is convenient and inexpensive for recording
optic nerve head structure9. Therefore, developing an automatic deep learning (DL) model to detect POAG with high
accuracy from fundus photographs to address the lack of experienced ophthalmologists is important.

In recent years, developments in artificial intelligence (AI) have provided potential opportunities for automatic POAG
diagnosis using fundus photographs.10–17 While such DL models have increasingly achieved expert-level performance,
there is growing concern that these models may reflect and amplify human bias and reduce the quality of their per-
formance in historically under-served populations such as Black individuals.18–21 The topic of AI-driven underdiag-
nosis and overdiagnosis has been particularly important.21, 22 In this work, we define “Underdiagnosis” as the problem
where the model falsely claims that the individual is healthy, increasing the risks of delayed or inadequate treatment,
and “Overdiagnosis” as the problem where the model predicts healthy people wrongly into sick ones, leading to indi-
viduals’ stress, fear, and unnecessary/costly treatment. Therefore, model fairness of POAG diagnosis can be a crucial
concern if used in the clinical pipeline for patient triage.

To our knowledge, the topic of AI-driven underdiagnosis and overdiagnosis of POAG diagnosis has not been ex-
plored before.23 In this study, we will systematically study underdiagnosis and overdiagnosis bias in the AI-based
POAG diagnosis models from a large, cross-sectional dataset obtained from the Ocular Hypertension Treatment Study
(OHTS).24 OHTS is one of the largest longitudinal clinical trials in POAG (1,636 participants and 37,399 images) from
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22 centers in the United States.25 We chose these subgroups mainly because of the clear history of bias in previous
research.26–29

2 Materials and Methods
2.1 The OHTS dataset

In this study, we perform a study of model bias in POAG diagnosis in a large-scale, longitudinal, and population-
based dataset (Table 1). Previous studies show that the classifier exhibits different performances in different individual
groups stratified by sex, race, and age.29 Inspired by these works, we report results by considering these factors.

The dataset is obtained from the Ocular Hypertension Treatment Study (OHTS). The study protocol was approved
by the Institutional Review Board at each clinical center, and the Weill Cornell Medicine IRB determined that the
protocol does not constitute human subjects research. All risk factors were measured at baseline before the onset of
the disease and collected for approximately 16 years. The participants in this dataset were selected according to both
eligibility and exclusion criteria.24

Briefly, the eligibility criteria include intraocular pressure (between 24 mm Hg and 32 mm Hg in one eye and between
21 mm Hg and 32 mm Hg in the fellow eye) and age (between 40 and 80 years old). The visual field tests were
interpreted by the Visual Field Reading Center, and the stereoscopic photographs were interpreted by the Optic Disc
Reading Center. Exclusion criteria included previous intraocular surgery, visual acuity worse than 20/40 in either
eye, and diseases that may cause optic disc deterioration and visual field loss (such as diabetic retinopathy). The
gold standard POAG labels were graded at the Optic Disc Reading Center. In brief, two masked certified readers
were instructed to independently detect glaucomatous optic disc deterioration over time. If there was a disagreement
between two readers, a senior reader reviewed the subject in a masked fashion. The POAG diagnosis in a quality
control sample of 86 eyes (50 normal eyes and 36 with progression) showed test-retest agreement at κ = 0.70 (95%
confidence interval [CI], 0.55-0.85). More details of the reading center workflow have been described in Gorden et
al.25

Total POAG

No. of images 37,399 2,327 ( 6.22%)
Sex

Male 16,185 1,303 ( 8.05%)
Female 21,154 1,024 ( 4.84%)

Race
Non-Black 28,460 1,554 ( 5.46%)

Black 8,879 773 ( 8.71%)
Age

40-49 4,292 64 ( 1.49%)
50-59 11,962 356 ( 2.98%)
60-69 11,904 846 ( 7.11%)
70-79 7,593 829 (10.92%)
≥80 1,588 232 (14.61%)

Table 1: The characteristics of the OHTS dataset.

2.2 Definition of POAG underdiagnosis and overdiagnosis

To assess model fairness, we compare underdiagnosis and overdiagnosis rates across subpopulations. Similar to ref,29

we define the underdiagnosis rate as the false-negative rate (FNR) of the binarized model prediction for the POAG
at the subgroup levels: P (ŷ = non-POAG|y = POAG, A). Here A is the sex, race, or other factors that the model
should be free of bias. For example, the underdiagnosis of female individuals is given by P (ŷ = non-POAG|y =
POAG, female). We then compare these underdiagnosis rates across subpopulations. We say a classifier is fair if the
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Figure 1: The experimental design. We focus our underdiagnosis and overdiagnosis experiments on subgroups of
race, sex, and age.

individuals in the protected and unprotected groups satisfy the formula:

P (ŷ = non-POAG|y = POAG, female) = P (ŷ = non-POAG|y = POAG,male)

For overdiagnosis, we will measure the false-positive rate (FPR) for the POAG across all subgroups, i.e., P (ŷ =
POAG|y = non-POAG, A). This measure shows that the model fails to diagnose those individuals who would never
develop POAG. Some of the harms caused by overdiagnosis are anxiety and having treatments that are not needed.

Besides single identities, we also examined underdiagnosis and overdiagnosis in intersectional groups - individuals
who belong to two subpopulations.29 For example, the underdiagnosis of Black female individuals is given by P (ŷ =
non-POAG|y = POAG, female,Black). Here, we want to examine if individuals who belong to two subgroups may
have a larger underdiagnosis rate. In other words, not all female individuals are misdiagnosed at the same rate (for
example, Black female individuals are misdiagnosed more than non-Black female individuals).

2.3 Model development

Figure 1 shows the pipeline of our model. All images are resized to 224× 224× 3 and normalized using the mean and
standard deviation of the ImageNet dataset.30 We sequentially apply three augmentation operations on the fly during
training: (1) random rotation between 0◦ and 10◦, (2) random translation: an image was translated randomly along
the x- and y-axes by distances ranging from 0 to 10% of width or height of the image, and (3) random flipping. The
diversity of the dataset could be increased due to these data augmentation techniques, which generate effective and
robust representations.

The input images are then passed through a convolutional neural network to generate the prediction results. In this
study, we used the DenseNet-20131 pre-trained on ImageNet.32 We replaced the last layer with a new randomly
initialized fully-connected layer with 2 output neurons (POAG and normal). We used binary cross-entropy as the loss
function. Since there are only 6.22% of images in the OHTS dataset that has POAG (Table 1, a severe class imbalance
exists for POAG diagnosis, to overcome this problem, we adopted weighted cross-entropy, a commonly used loss
function in classification. The adopted weighted cross-entropy was:

Lθ = − 1

N

N∑
i=1

[βyi log(ŷiDenseNet(xi, θ)) + (1− β)(1− yi) log(1− ŷiDenseNet(xi, θ))] (1)

where N is the number of training examples, β is the balancing factor between positive and negative samples, yi is the
observed true label of image xi, ŷi is the probability predicted by the classifier, and θs represents the parameters of the
DenseNet-201. Here, we used inversely proportional to POAG frequency in the training data. Finally, we fine-tuned
the entire network on the OHTS in an end-to-end manner.
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2.4 Experimental settings

The model was implemented by Keras with a backend of Tensorflow. The network was optimized using the Adam
optimizer method.33 The learning rate is 5×10−5. The experiments were performed on Intel Core i9-9960 X 16 cores
processor and NVIDIA Quadro RTX 6000 GPU.

We used the five-fold cross-validation in this study. We split the entire dataset randomly into five groups at the
individual level. This ensured that no participant was in more than one group to avoid cross-contamination between
the training and testing datasets. In each fold of the cross-validation, we took one group (20% of total subjects) as the
hold-out test set and the remaining 4 groups as the training set.

3 Results and discussion

The underdiagnosis (Figure 2) and overdiagnosis (Figure 3) for POAG screening show an inverse relationship in both
subgroups and intersectional groups in the OHTS dataset. As suggested by Seyyed et al,29 this indicates that the model
consistently misclassifies the under-served subpopulations due to potential biases, rather than simple, random errors.

3.1 Underdiagnosis in subpopulations and intersectional groups

Figure 2A shows that the underdiagnosis rate differs in all subpopulations of sex, race, and age. Specifically, females,
non-Black individuals, and individuals under 60 years old have higher underdiagnosis rates than their counterparts.
In other words, the individuals of these groups are more likely falsely predicted as healthy, preventing them from
receiving appropriate treatments. From Table 1, we can see that the individuals in these groups have a lower prevalence
of POAG. For example, the POAG rate of individuals aged ≥ 60 is around three times more than that of individuals
aged < 60 (9.04% vs. 2.58%). Since these groups may not be adequately represented in the OHTS data, the supervised
machine learning model trained from the data might be biased.

In addition, female individuals have the highest underdiagnosis rate among indicated subgroups. However, the num-
bers of POAG female and male individuals are about the same. This observation suggests that a simple resampling
approach to ensure the dataset is balanced across different groups may not always be a solution.

We also investigate intersectional groups, which means the individuals belong to two subpopulations, e.g., female
Black individuals. As shown in Figure 2B(i)-(iii), intersectional groups also have the problem of underdiagnosis.
Figure 2B(i) shows that female non-Black individuals have a higher underdiagnosis rate than female Black individuals.
Female individuals aged < 60 years have a higher rate than female individuals aged ≥ 60 years. Compared to the
single identities, we observed that the intersectional identities amplify the model bias. For example, the difference
between Black and non-Black individuals is 2.50%, but the difference between female Black and female non-Black is
8.61%. The most underdiagnosed group is young female individuals.

Similarly, Figure 2B(ii) shows that Black females and younger individuals have a higher underdiagnosis rate than
Black males and older adults. Figure 2B(iii) also indicates that female youngers are more heavily underdiagnosed.
There is no significant difference between Black and non-Black younger individuals. This may be partially due to the
small test set sizes (84 cases with the POAG label for individuals aged < 60 years).

3.2 Overdiagnosis in subpopulations and intersectional groups

Figure 3A shows that healthy males and healthy older adults are more likely to be misclassified as POAG positive. On
the other hand, the Black and non-Black subpopulations in Figure 3A have similar overdiagnosis rates. From Figure
3B, we observed that the intersectional identities are often overdiagnosed more heavily than the group in aggregate.
Specifically, female and Black older adults are more easily overdiagnosed than female and Black younger adults
(Figure 3B(i) and (ii)).
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Figure 2: Underdiagnosis analysis across subgroups of sex, race, and age in the OHTS dataset. A) The underdiagnosis
rates in the subpopulations. B) Intersectional underdiagnosis rates for female individuals, Black individuals, and
individuals aged < 60 years, respectively. The results are average results of the five-fold cross-validation.

Figure 3: Overdiagnosis analysis across subgroups of sex, race, and age in the OHTS dataset. A) The overdiagnosis
rates in the subpopulations. B) Intersectional overdiagnosis rates for female individuals, Black individuals, and indi-
viduals aged < 60 years, respectively. The results are average results of the five-fold cross-validation.
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3.3 Discussions and Limitations

We have found that underdiagnosis and overdiagnosis exist in the OHTS dataset for POAG diagnosis. The DL model
generated underdiagnosis and overdiagnosis biases in under-served subpopulations, such as female individuals and in-
dividuals under 60 years old. Such biased diagnoses were even greater among individuals with intersectional identities,
including Black females and females aged under 60 years old. Subpopulations like female individuals and individuals
under 60 years old are most affected by POAG in the OHTS dataset, suggesting further attention when applying DL
models in clinical decision-making34.

The DL model performs similarly on Black and non-Black individuals mainly because the number of Black individuals
in our datasets is much smaller than the other group, even though they have a higher prevalence of POAG. Therefore,
the adverse effects on Black individuals are probably mitigated by the small number of their population. This reminds
us that we must also consider the number of subpopulations when constructing the dataset35.

We also found that these differences in underdiagnosis and overdiagnosis exist in other clinical research areas (e.g.,
thoracic diseases, heart diseases, and kidney diseases),29, 36, 37 which means that these disparities may be widespread
in biomedical study.

One limitation of this study is that only one dataset was used. However, the OHTS data is one of the largest longitudinal
clinical trials in POAG from 22 centers in the United States. Therefore, we believe the observations of model bias are
likely to be generalizable.

Another limitation is that we only studied the fairness of a binarized model. Unfortunately, the probabilities predicted
by the model may not be calibrated: probabilities are calibrated where a prediction of POAG with confidence p is
correct p percent of the time.38 That being said, the probabilities predicted by the model may be over-confident in
some cases and under-confident in other cases. Moreover, as we see in Figures 2, the severely imbalanced data may
result in even more bias in the predicted probabilities as they over-favor in predicting the majority class. As such,
we should investigate the relationship between calibration and POAG underdiagnosis/overdiagnosis in the future. In
addition, we plan to develop an efficient method to reduce bias in the future.

4 Conclusion

In this paper, we systematically study underdiagnosis and overdiagnosis bias in the DL-based POAG diagnosis models
and identify the factors contributing to model fairness. We find deep learning-based underdiagnosis and overdiagnosis
exist among under-served subpopulations in POAG diagnosis on the OHTS dataset. Underdiagnosis will prevent
the individuals from receiving appropriate treatment, while overdiagnosis will let the individuals receive or continue
receiving unnecessary treatments. Bias between the individuals in intersectional subgroups such as females under
60 years and Black females are more severe. This emphasizes that bias mitigation approaches should consider the
combination of characteristics involved in bias rather than a single identity. As deep learning models are implemented
in clinical practice, this problem takes on particular urgency.
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