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Abstract
By using abundant unlabeled data, semi-supervised
learning approaches have been found useful in var-
ious tasks. Existing approaches, however, neglect
the fact that the storage available for the learning
process is different under different situations, and
thus, the learning approaches should be flexible sub-
ject to the storage budget limit. In this paper, we
focus on graph-based semi-supervised learning and
propose two storage fit learning approaches which
can adjust their behaviors to different storage bud-
gets. Specifically, we utilize techniques of low-rank
matrix approximation to find a low-rank approxi-
mator of the similarity matrix to meet the storage
budget. The first approach is based on stochastic
optimization, which is an iterative approach that con-
verges to the optimal low-rank approximator glob-
ally. The second approach is based on Nyström
method, which can find a good low-rank approxima-
tor efficiently and is suitable for real-time applica-
tions. Experiments show that the proposed methods
can fit adaptively different storage budgets and ob-
tain good performances in different scenarios.

1 Introduction
During the past decade, smart mobile devices such as mobile
phones are becoming increasingly popular. Mobile devices can
easily generate an enormous amount of data, such as photos,
texts, videos, etc. However, although most users prefer neatly
arranged data, few users bother to label these data, for example,
assigning labels to photos they took.

This problem naturally corresponds to semi-supervised
learning where few photos labeled by users represent la-
beled data while large amounts of unlabeled photos can be
regarded as unlabeled data. Semi-supervised learning uti-
lizes these additional unlabeled data to enhance classification.
Among many semi-supervised learning approaches, graph-
based semi-supervised learning is one of the most important
semi-supervised learning paradigms [Zhu, 2007; Liu et al.,
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2012]. Graph-based semi-supervised methods define a graph
where the nodes are all instances either labeled or unlabeled,
and edges reflect the similarity of examples [Zhu et al., 2005].
In graph-based methods, a large kernel matrix of size n× n
will be calculated, where n is the number of instances, result-
ing in ineffectiveness in both computation and storage. During
the past decade, various methods from different perspectives
have been proposed in graph-based semi-supervised learn-
ing, including Mincut [Blum and Chawla, 2001], Gaussian
Random Fields and Harmonic Functions [Zhu et al., 2003;
Grady and Funka-Lea, 2004; Levin et al., 2004], Local and
Global Consistency [Zhou et al., 2003], Tikhonov Regulariza-
tion [Belkin et al., 2004], Graph Kernels [Chapelle et al., 2002;
Zhu et al., 2004], Spectral Graph Transducer [Joachims, 2003],
Tree-Based Bayes [Kemp et al., 2003], etc.

There are some graph-based semi-supervised methods deal-
ing with the large kernel matrix, however, previous studies on
graph-based semi-supervised learning almost neglect the fact
that the storage budget that can be used is different on differ-
ent devices. Back to the photos labeling example, since the
mobile phones have various limited memory, such as 500MB,
1000MB or 2000MB, we cannot exploit all the unlabeled pho-
tos to do semi-supervised learning, and the best to do is to
fully exploit the storage budget rather than fully exploiting
the unlabeled data. In this paper, we propose to study storage
fit learning, that is, the learning process is designed to fully
exploit a storage budget limit. For example, assume that a
storage of 106 × 106 matrix is required for a concerned semi-
supervised learning algorithms Algo to exploit all available
unlabeled data, yet the memory storage available is only able
to accommodate a 103 × 103 matrix. Ideally, effective storage
fit learning algorithms should be able to adjust their behav-
iors considering the given storage budgets. This problem was
firstly studied by Zhou et al. [2009], where fully-connected
affinity graph for cluster kernel [Chapelle et al., 2002] was re-
placed by k-nearest neighbor graph for approximation. When
k is small, abundant unlabeled data can be exploited, but the
approximation would be poor; when k is large, the approxi-
mation can be good, but the computational load is too high to
handle large-scale data.

In this paper, we will make the cluster kernel method adap-
tively fit the storage budget. Our basic ideas can also be
generalized to other approaches relying on spectral analysis
which suffer seriously from storage limitation. Inspired by



techniques of low-rank matrix approximation, we propose two
simple but effective methods to solve the problem of storage
fit learning. One is based on stochastic optimization and the
other on Nyström. The stochastic optimization method can
converge to the optimal low-rank approximator iteratively and
the Nyström-based method can find a good low-rank approxi-
mator efficiently. Unlike most graph-based semi-supervised
learning methods, the two proposed methods can adaptively
adjust their memory requirements to fit different storage bud-
gets as well as obtain good performances.

2 Background
Cluster kernel (abbreviated as ClusK) [Chapelle et al., 2002;
Zhou et al., 2009] is a classic technique that has been popularly
used in graph-based approaches. The details of cluster kernel
method are given as follows.

Given labeled data {(x1, y1), · · · , (xl, yl)} and unlabeled
data{xl+1, · · · ,xl+u}, l � u, n = l + u where x ∈ Rd and
y ∈ {−1, 1}. We can construct a kernel matrix K where
nearby data points are assigned with relatively large edge
weights. The procedure of cluster kernel algorithm is pre-
sented as follows:

1. Let D denote the diagonal matrix whose elements
are Dii = ΣjKij , and construct the matrix L =

D−1/2KD−1/2.
2. Compute the eigendecomposition L = UΣU>, and as-

sume that the eigenvalues are ordered as σ1 ≥ · · · ≥ σn.
3. Apply a transfer function ϕ on σ. Let σ̃i = ϕ(σi), and

construct L̃ = U Σ̃U>.
4. Let D̃ denote the diagonal matrix whose elements are
D̃ii = 1/L̃ii, and compute K̃ = D̃1/2L̃D̃1/2.

The transfer function ϕ can take different forms. Here, the
poly-step transfer function which has achieved the best perfor-
mance in [Chapelle et al., 2002] is adopted:

σ̃i =

{√
σi i < h(= l + 9)

σ2
i i ≥ h(= l + 9).

(1)

The kernel K̃ obtained from cluster kernel method then could
be used to do classification by kernel SVM. One problem of
this method is that it has a storage requirement up to O(n2).
It cannot work for those situations where we have limited
resources which cannot meet the requirement, such as do-
ing image labeling [Sánchez et al., 2013] on smart phones.
Another problem we would face is that mobile devices have
different storage sizes. The effect of storage increasing is
weakened since the number of instances used to calculate the
kernel only increases by the square root of increased storage.

For the first problem, several large scale graph-based semi-
supervised methods try to tackle it. Some of them focus
on reducing time complexity. For example, Pfahringer et
al. [2007] compute the large kernel matrix inverse; Fowlkes
et al. [2004] calculate only the dominate eigenvalues; Kumar
et al. [2009] and Zhang and Kwok [2010] use kernel approxi-
mation in manifold learning. There are some other methods
reducing space complexity including the fixed-sized least-
squares support vector machines which try to reduce space

complexity by approximating kernels [Brabanter et al., 2010;
Jumutc et al., 2013]. However, these methods focus on
how to solve the large scale problem while we concen-
trate on the fitting problem which means even though the
data is in regular scale, we cannot compute the full ker-
nel matrix since the storage is limited. Moreover, due to
different storage budgets, we need to adjust our methods
to fit different scenarios. There are some other related
works relying on spectral analysis which try to tackle the
large-scale problem in clustering, such as [Li et al., 2016;
Han et al., 2016]. However, they do not consider the situation
where a storage budget is given and the methods should dy-
namically fit it. We notice that the key storage cost of cluster
kernel method is owing to storing matrix K and L. Addition-
ally, the main time cost is due to eigendecomposing L. Thus
if we can efficiently obtain the eigensystem of K or L with-
out storing them, we would have room to fit our methods for
different storage budgets. In this paper, to solve the storage fit
problem, we utilize low-rank matrix approximation techniques
to find low-rank approximator of K or L and thus, we can use
the top eigensystem to get surrogate “virtual” samples which
can be used in linear SVM. By adjusting parameters according
to different budgets, we can exploit all the unlabeled data and
obtain good performances in different scenarios.

3 Our Proposed Approaches
In this section, we first describe the basic idea of how to per-
form kernel SVM to do classification without storing the whole
n × n kernel. Then the specific methods which can adjust
their bahaviors to defferent storage budgets are presented in
accompany with complexity analysis and how to dynamically
adjust parameters according to different budgets.

Originally, we calculate K̃ according to the steps mentioned
in Section 2 to perform kernel SVM. But these steps cost
nearly O(n3) time [Pan and Chen, 1999] and O(n2) space
which cannot work in our setting. We don’t need to compute
K̃, instead, we can transform a kernel SVM into a linear SVM
by decomposing kernel matrix on the training and testing
data [Zhang et al., 2012] which is showed in Proposition 1.
Proposition 1 Given training data Xr and label yr, and test
data Xe. A kernel SVM trained on Xr, yr, and tested on Xe

is equivalent to a linear SVM trained on Fr, yr and tested on
Fe, where

K =

[
Fr

Fe

]
[F>r F>e ] (2)

is any decomposition of the PSD kernel matrix K evaluated
on (Xr,Xe), and the factor Fr ∈ Rn×p and Fe ∈ Rm×p can
be deemed as “virtual samples” whose p is the rank of K.
Proposition 1 shows that any kernel SVM can be cast as an
equivalent linear SVM by decomposing of the kernel matrix
K = FF>, where F serves as an empirical kernel map or
virtual samples. The positive semi-definiteness of the kernel
matrix guarantees that decomposition (2) always exists.

In our setting, we would like to decompose K̃ to obtain
the virtual examples without storing K̃. The basic idea is to
exploit the top eigensystem to compute the virtual examples
directly. Specifically, note that K̃ = D̃1/2L̃D̃1/2, so that the



virtual samples can be represented as F = K̃1/2 = D̃1/2L̃1/2.
Now, the task is transformed to compute D̃1/2 and L̃1/2. As-
sume that we already have the top-k eigensystem ofK, namely,
(Uk,Σk) where Σk is a diagonal matrix whose diagonal ele-
ments are the first k eigenvalues of K and Uk consists of the
k corresponding eigenvectors. So we can approximate K by
K ≈ UkΣk(Uk)>. According to Section 2, we have

L = D−1/2KD−1/2 ≈ D−1/2UkΣkU
>
k D

−1/2. (3)

Then apply the transfer function ϕ on every diagonal elements
of Σk, we have

L̃ ≈ D−1/2UkΣ̃kU
>
k D

−1/2. (4)

Therefore we can verify that

L̃1/2 ≈ D−1/2Uk(Σ̃k)1/2 and D̃ii = 1/L̃ii. (5)

Finally, the virtual samples are formed as

F ≈ D̃1/2L̃1/2. (6)

According to Proposition 1, we can directly perform linear
SVM on F . Based on this idea, what we should do in the
following is to obtain the eigensystem of K or equally L. We
adopt two different kinds of methods to achieve this goal.
One is an iterative approach which uses partial information
of L in each round to estimate the top eigenvectors, and the
other is an approximating approach which utilizes Nyström to
directly approximate the original kernel matrix by sampling.
Note that Mehrkanoon and Suykens [2014] also use Nyström
approximation of feature map in semi-supervised scenario, but
they only considers the large scale setting while we focus on
the fitting problem where we adjust our methods to be fit for
different storage budgets.

3.1 The SoCK Method
In this section, we propose an iterative approach: Stochastic
optimization for Cluster Kernel (SoCK). Specifically, we use
partial information of matrix L in each round to estimate the
top eigenvectors. With appropriate initialization, the solution
to SoCK will converge to the optimal low-rank approximator
globally [Zhang et al., 2016]. After obtaining virtual samples,
through adjusting the corresponding parameters, we are able
to adaptively fit SoCK for different storage budgets.

Denote by UΣU> the eigendecomposition of the matrix
L ∈ Rn×n mentioned in Section 2, where U = [u1, · · · ,un],
Σ = diag[σ1, · · · , σn] and σ1 ≥ σ2 ≥ · · · ≥ σn. To obtain
the top eigensystem of L, we need to find a low-rank matrix L̂
to approximate L. We consider the Singular Value Threshold-
ing (SVT) operator [Cai et al., 2010] to L with threshold λ to
obtain the low-rank matrix L̂, i.e.,

L̂ = Dλ[L] =
∑
i:σi≥λ

(σi − λ)uiu
>
i . (7)

From (7), we can recover the top eigensystem of L (with
eigenvalues larger than λ) from the eigendecomposition of
L̂ since the eigenvectors of L̂ with nonzero eigenvalues are
the top eigenvectors of L and nonzero eigenvalues of L̂ are
the top eigenvalues of L minus λ. Then SVT operation can

Algorithm 1 SoCK

Input: labeled data {(x1, y1), · · · , (xl, yl)},
unlabeled data {xl+1, · · · ,xl+u}, l� u, n = l + u;
The number of trials T , the regularization parameter λ;

Output: Predicted label y = [yl+1, · · · , yl+u]> of unlabeled data.
1: Initialize Z1 = 0 and calculate D;
2: for t = 1, 2, · · · , T do
3: Sample a random matrix ξt;
4: let Lt = D−1/2ξtD

−1/2, ηt = 2/t;
5: Zt+1 = Dηtλ[(1− ηt)Zt + ηtLt];
6: end for
7: Compute eigensystem of ZT+1 : (Uk, Σ̂k) or {(ui, σ̂i)}ki=1;
8: Let σi = σ̂i + λ and ordered as σ1 ≥ σ2 ≥ · · · ≥ σk;
9: Let σ̃i = ϕ(σi) to get diagonal matrix Σ̃k;

10: L̃1/2 = UkΣ̃
1/2
k , D̃ii = 1/L̃ii, F = D̃1/2L̃1/2;

11: Regard every row of F as a new instance to perform linear SVM.

be formulated as a Stochastic Composite Optimization (SCO)
problem. First, we propose the following convex composite
optimization problem

min
Z∈Rn×n

1

2
‖Z − L‖2F + λ‖Z‖∗ (8)

where ‖ · ‖∗ is the nuclear norm of matrices and note that
L̂ is the optimal solution to it. We can generate a low-rank
random matrix ξ which is an unbiased estimate of K by the
random Fourier features [Rahimi and Recht, 2007], then Lξ =

D−1/2ξD−1/2 is an unbiased estimate of L, i.e., L = E[Lξ].
Then (8) is equivalent to

min
Z∈Rn×n

1

2
E[‖Z − Lξ‖2F ] + λ‖Z‖∗. (9)

Due to the high space complexity of generic algorithms for
stochastic optimization, we utilize an algorithm which is based
on Stochastic Proximal Gradient Descent (SPGD) where the
power of the non-smooth term is preserved to optimize (9)
and take its last iteration as the final solution [Zhang et al.,
2016]. Denote by Zt the solution at the t-th iteration. In this
iteration, we first sample a random matrix ξt ∈ Rn×n. Let
Lt = D−1/2ξtD

−1/2 and it is easy to verify that Zt − Lt
is an unbiased estimate of the gradient of 1

2E
[
‖Z − Lξ‖2F

]
.

Then, we update the current solution by the SPGD, which
is essentially a stochastic variant of composite gradient map-
ping [Nesterov, 2013]

Zt+1 = argmin
Z∈Rn×n

1

2
‖Z − Zt‖2F

+ ηt〈Z − Zt, Zt − Lt〉+ ηtλ‖Z‖∗

= argmin
Z∈Rn×n

1

2
‖Z − [(1− ηt)Zt + ηtLt] ‖2F + ηtλ‖Z‖∗

= Dηtλ [(1− ηt)Zt + ηtLt]
(10)

where ηt > 0 is the step size. Let ZT+1 be the final solution
obtained after T iterations. We eigendecompose ZT+1 and
obtain its eigensystem {(ui, σi)}ki=1 with nonzero eigenvalues.
Finally, we return {(ui, σi + λ)}ki=1 as the top eigensystem



of L. After getting the eigensystem of matrix L, we can easily
obtain the approximation of virtual samples F by following
(4), (5) and (6). We conclude the procedure in Algorithm 1.

According to [Zhang et al., 2016], we have the following
theorem which shows that with a high probability, ZT+1 con-
verges to L̂, the optimal solution to (9), at an O(1/T ) rate.

Theorem 1 Assume the Frobenius norm of the matrix Lξ =

D−1/2ξD−1/2 is upper bounded by some constant C > 0, i.e.,
‖Lξ‖F ≤ C. With a probability at least 1− δ, we have

‖ZT+1 − L̂‖2F

≤ 8

T

[
Cλmax

t∈[T ]

√
rt + C2

(
8 + 6 log

d2 log2 T e
δ

)]
= O ((log log T ) /T )

where rt is the rank of Zt.

From the above theorem we observe that with the number of it-
erations increasing, the approximation error ‖L̂−L‖F /n will
decrease. We will show that the classification performance
is positively correlated with the approximation error in sub-
section 4.3. To discuss the space and time complexity, we
have to mention the implementation issues. First, the random
matrix Lt can always be represented by Lt = ζtχ

>
t , where

ζt, χt ∈ Rn×at are two rectangular matrices with at � n.
Now, suppose that Zt is also represented by Zt = UtV

>
t ,

where Ut, Vt ∈ Rn×bt are two rectangular matrices with
bt � n. Then, Zt+1 = Dηtλ[(1 − ηt)UtV >t + ηtζtχ

>
t ] can

be solved efficiently according to Lemma 2.4 of [Avron et al.,
2012]. From the above discussion, we know that the space
complexity is O(n(d+ at + bt)). The running time from step
1 to step 7 in Algorithm 1 is dominated by computingD which
takes O(n2d) time, calculating ξt, which takes O(ndat) time
and eigendecomposition, which takes O(n(at + bt)

2) time.
Other steps either take O(nk) or O(nk2) time where k is the
number of nonzero eigenvalues. As a result, the time complex-
ity is O(n[nd+ dat + (at + bt)

2 + k2]).
We study the relationship between the storage budget and

the value of parameters. Suppose each double float costs 8
bytes in storage which is popular in current machines. Given n
examples with dimensionality d, the storage required for these
examples is dn× 8 bytes. After applying SoCK, we need to
store the matrix U and F where they both contain n(at + bt)
elements. So the storage for U and F is 2n(at + bt)× 8 bytes.
Other matrices such as D only have n × 1 elements so that
they can be omitted. Overall, the storage required by the SoCK
method for exploiting all the labeled and unlabeled examples
is (d + 2(at + bt))n × 8 bytes. Since d and n are known,
and at, the number of Fourier Features can be determined by
experience, we can get the estimate of the largest bt given the
storage budget.

3.2 The NysCK Method
In this section, we propose an approximate approach: Nyström
Cluster Kernel (NysCK). The basic idea is to obtain the eigen-
system of the kernel matrix K by employing Nyström.

One of the main characteristics of the Nyström method
is that it uses samples to reduce the decomposing of the

Algorithm 2 NysCK

Input: Labeled data {(x1, y1), · · · , (xl, yl)},
unlabeled data {xl+1, · · · ,xl+u}, l� u, n = l + u;

Output: Predicted label y = [yl+1, · · · , yl+u]> of unlabeled data.
1: Sample s instances and calculate D, W and C;
2: Get ΣW,k and UW,k from SVD WK = UW,kΣW,kU

>
W,k;

3: Compute Σk and Uk using (13);
4: Apply a transfer function ϕ on every element of Σk to get Σ̃k;
5: Compute L̃, D̃ and F using (4), (5) and (6);
6: Regard every row of F as a new instance to perform linear SVM.

given n × n kernel matrix in the original problem to the de-
composing of an s × s matrix, where s is the number of
samples, much smaller than n. Consider that we do rank-k
approximation (with k < s), we sample s instances from
data set X = {x1, · · · ,xn}. Here, we simply use uniform
sampling without replacement [Williams and Seeger, 2001;
Kumar et al., 2012]. Based on the instances we have sampled,
we can calculate C and W . Let C denote the n × s matrix
formed by corresponding s columns of original kernel matrix
K and W the s × s matrix consisting of the intersection of
these s columns with the corresponding s rows of K. Note
that W is symmetric positive semidefinite (SPSD) since K is
SPSD. Without loss of generality, the columns and rows of K
can be rearranged based on this sampling so that K and C can
be written as follows:

K =

[
W K>21
K21 K22

]
and C =

[
W

K21

]
. (11)

To compute the first k approximate eigenvalues Σk and the
corresponding k approximate eigenvectors Uk of the kernel
matrix K, we use SVD Wk = UW,kΣW,kU

>
W,k where Wk

is the best rank-k approximation of W . Similar to classical
Nyström method [Williams and Seeger, 2001], we can use C
and W from equation (11) to generate a rank-k approximation
Kk of K for k < n defined by

Kk = CW †kC
> ≈ K. (12)

where W †k denotes the pseudo-inverse of Wk. And the eigen-
values and eigenvectors are computed by

Σk =
(n
s

)
ΣW,k and Uk =

√
s

n
CUW,kΣ†W,k (13)

where Σ†W,k denotes the pseudo-inverse of ΣW,k. After get-
ting the approximate eigensystem of matrix K, we can easily
obtain the approximation of virtual samples F by following
(4), (5) and (6). The procedure is summarized in Algorithm 2.

Denote by n the number of all samples, and d the dimension.
From the above discussion, it is clear that the space complexity
is O(n(d+ k)). The running time is dominated by calculating
D, which takes O(n2d) time and the eigendecomposition
which takes O(nk2) time. We can omit the time cost of other
steps. In summary, the time complexity isO(n(nd+k2)), and
the space complexity is linear in n. We provide a summary
of the space and time complexity of cluster kernel method,
SoCK and NysCK in Table 1. Note that n is the number of
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Figure 1: Comparison among TSVM+RandSub, ClusK+RandSub, SoCK and NysCK on AUC. The original TSVM (kernel type) and ClusK
cannot deal with such a large data set even when the largest budget (i.e., 600MB) was allocated.

Table 1: Space and time complexity comparisons.
Methods Space Time
ClusK O(n2) O(n3)
NysCK O(n(d+ k)) O(n(nd+ k2))
SoCK O(n(d+ at + bt)) O(n[nd+ dat + (at + bt)

2 + k2])

all instances, either labeled or unlabeled, d is the dimension
of each instance, k is the number of nonzero eigenvalues and
at and bt are the temporary parameters generated during the
SoCK implementation process.

Suppose each double float costs 8 bytes in storage. Given
n examples with dimensionality d, the storage required for
these examples is dn × 8 bytes. After applying NysCK, we
need to store a matrix C which contains n× s elements. So
the required storage for C is sn × 8 bytes. We also obtain
matrix Uk and F . These two matrices both have n rows and k
columns which take 2kn× 8 bytes. Other matrices generated
during our process either have s× s elements or appear with
k rows and k columns which can be ignored since s and
k are very small compared with n. So, the overall storage
required by the NysCK method for exploiting all the labeled
and unlabeled examples is (d+ s+ 2k)n× 8 bytes. Since d
and n are known, by assuming s = k log k [Boutsidis et al.,
2009], we can get the estimate of the largest k tolerated by the
storage budget.

4 Experiments
In our experiments, we consider two scenarios, one is that
algorithms are restricted to limited storage budgets, the other
is that we have enough storage budgets to exploit all available
unlabeled data. We also discuss the difference between SoCK
and NysCK. All the experiments performed on the cores with
CPU clocked at 2.53GHz. All the experiments are repeated
for 30 times and the average results are presented.

4.1 With Storage Limit
First, we learn how algorithms work given storage budgets. In
this setting, due to the storage budget, we can not include all
the test data in the training process, thus transductive problem
becomes an inductive one. Therefore all the classic transduc-
tive methods cannot be compared with. So we compare two
inductive methods, namely Cluster Kernel method (ClusK)
and Transductive SVM (TSVM) [Joachims, 1999]. According
to [Chapelle et al., 2002], σ of Gaussian kernel is set to 0.55
for both proposed algorithms as well as ClusK. We run ex-
periments on two large scale UCI data sets, named as adult-a

Table 2: Time used (measured in seconds) on adult-a and w8a datasets.
TR is abbreviated for TSVM+RandSub, and CR is abbreviated for
ClusK+RandSub. #labeled means the number of labeled instances
and Budget is the memory budget measured by MB.

#labeled Data Budget TR CR SoCK NysCK
1,000 adult-a 200 4,940 13 2,230 2,175

400 9,990 24 2,230 2,190
600 12,800 39 2,230 2,240

w8a 200 5,430 12 7,300 7,300
400 10,600 20 7,400 7,300
600 13,300 28 7,450 7,300

3,000 adult-a 200 2,722 13 728 700
400 5,878 23 798 715
600 9,043 84 821 765

w8a 200 3,694 11 1,750 1,720
400 7,353 19 1,755 1,770
600 11,700 40 1,750 1,715

and w8a respectively. Adult-a has 32,561 samples with 123
dimensions, meanwhile w8a contains 49,749 samples with
300 dimensions. We randomly pick 1K or 3K examples to
use as labeled training examples and regard the remaining
ones as unlabeled examples. In the experiments we evaluate
the performances under three storage budgets, i.e., 200MB,
400MB and 600MB. The original ClusK and kernel TSVM
cannot deal with such two large data sets even when the largest
budget (i.e., 600MB) is allocated. So we choose to do random
sampling on unlabeled data to relieve this problem. ClusK
and TSVM facilitated with random sampling [Delalleau et al.,
2006] are denoted by ClusK+RandSub and TSVM+RandSub,
respectively. We gradually increase the sampling number until
MATLAB is out of memory given the corresponding storage
budget. In addition, we use the calculation described at the
end of Section 3.1 and Section 3.2 to estimate bt and k for
SoCK and NysCK respectively. It is worth mentioning that
the positive category ratio of adult-a is 0.2408 and w8a 0.0297.
So we adopt AUC as our performance measure since AUC is
insensitive to class imbalance data.

As can be seen from Figure 1, SoCK and NysCK outperform
other two methods under all budgets. Note that some of the
AUC value of TSVM+RandSub drop slightly with increasing
memory budget. Actually, it has been reported in previous
studies that the performance of TSVM may decrease when
unlabeled data are used [Cozman et al., 2003; Li and Zhou,
2015]. The reason is probably that there exist multiple Large
Margin Separators (LMS) given few label examples and a



Table 3: AUC on UCI data sets without storage limit. The number in parentheses shows the relative rank of the algorithm on the corresponding
data set. The smaller the rank, the better the relative performance. ”size” means the number of instances; ”dim” means the dimensionality. The
best performance on each data set is bolded.

Dataset [size, dim] KNN Harmonic CMN TSVM ClusK SoCK NysCK
australian[690,42] .743(7) .754(5) .754(6) .851(4) .873(3) .902(1) .897(2)
credit-a[653,15] .805(7) .874(5) .864(6) .894(3) .901(1) .884(4) .896(2)
credit-g[1000,20] .591(7) .670(5) .670(6) .700(4) .711(2) .723(1) .705(3)
diabetes[768,8] .640(7) .737(5) .737(6) .781(2) .801(1) .775(3) .757(4)
german[1000,59] .587(7) .665(4) .665(5) .655(6) .691(2) .710(1) .669(3)
kr-vs-kp[3196,36] .821(7) .917(6) .917(5) .928(4) .990(1) .985(2) .980(3)
splice[3175,60] .678(7) .782(5) .782(6) .825(3) .899(1) .891(2) .823(4)
svmguide3[1284,22] .605(7) .645(4) .643(5) .629(6) .769(2) .701(3) .771(1)

Total rank 56 39 45 32 13 17 22

large amount of unlabeled data, and it is difficult to select a
correct LMS without sufficient domain knowledge. Table 2
gives out the time using of those methods mentioned above
on adult-a and w8a. As can be seen from Table 2, SoCK and
NysCK are much faster than TSVM+RandSub even though
TSVM+RandSub samples a small number of unlabeled data
to do experiments while our methods utilize all the unlabeled
data. Besides, NysCK does not appear much faster than SoCK
because we set the number of iterations of SoCK to a very
small value, say, 20 to decrease the running time. If the number
of iterations of SoCK increases, the performance would be
better. Finally, ClusK+RandSub is the fastest one due to the
small data set by random sampling.

4.2 Without Storage Limit
In this section, we study the case without storage limit and
show that even in this situation, our methods can still work
well. The compared methods are listed as follows:
• Harmonic Gaussian Field method (Harmonic) which does

not consider the class imbalance [Zhu et al., 2003].
• Class Mass Normalization (CMN) which adjusts the class

distributions to match the priors [Zhu et al., 2003].
• Cluster Kernel method [Chapelle et al., 2002].
• Transductive SVM [Joachims, 1999].
• The classic 1-Nearest Neighbour Classifier (1NN).

All the parameters are selected via five-fold cross-validation.
We evaluate the proposed algorithms on 8 UCI data sets. On
each data set we randomly pick 10% examples to use as la-
beled training examples and regard the remaining ones as
unlabeled examples. The experiments are repeated 30 times
and the average AUC values on the unlabeled data are reported.
The results are showed in Table 3. As can be seen, the pro-
posed algorithms achieve competitive performance on all data
sets. In particular, ClusK obtains the best performance on 4
data sets in Table 3 as well as gets the highest score on total
rank. This phenomenon is as expected because ClusK is our
best baseline calculating the full kernel of all the data. Our
methods are slightly worse than ClusK due to the approxi-
mation characteristic. Moreover, ClusK, SoCK and NysCK
take the first three places on most data sets. You might no-
tice that SoCK and NysCK perform not as well as ClusK on
svmguide3 and splice, respectively. This is related to the dis-
tribution of the eigenvalues. Yang et al. [2012] find that when
there is a large gap in the eigen-spectrum of the kernel matrix,
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Figure 2: Comparison between SoCK and NysCK. The performance
is positively related to the approximate error in SoCK.

approaches based on the Nyström method can yield better
generalization error bound than random Fourier features based
approach. The spectrum in svmguide3 is highly skewed where
the biggest eigenvalue is 1 and the others are almost 0 while in
splice most eigenvalues are 1 and few are 0. NysCK is more
effective when the eigenvalues of the kernel matrix are highly
skewed just as that in svmguide3.

4.3 Comparison between SoCK and NysCK
Finally, we discuss the difference between SoCK and NysCK.
We experiment on two UCI data sets, kr-vs-kp and splice
with ClusK, SoCK and NysCK. We continually increase the
running time of SoCK by controlling the number of iterations.
As can be seen from Figure 2, NysCK gets an approximate
solution with a not high AUC value in a short time while ClusK
obtains a good solution with the highest AUC value but with
longer time and larger memory. SoCK can refine its solution
continuously with the decreasing of approximation error and
outperforms NysCK after a few seconds. Thus SoCK is more
effective while NysCK is more efficient.

5 Conclusion
In this paper, we focus on a new setting: storage fit learning
with unlabeled data. The key to this setting is that, given dif-
ferent storage budgets, even for the same data, the behavior
of the algorithm should be adjusted differently. Considering
that those algorithms relying on spectral analysis suffer se-
riously from storage burden of kernel matrix, we utilize the
techniques of low-rank approximation and present two simple
yet effective techniques which are able to adapt such kind of
algorithms to be fit for a given storage budget.
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