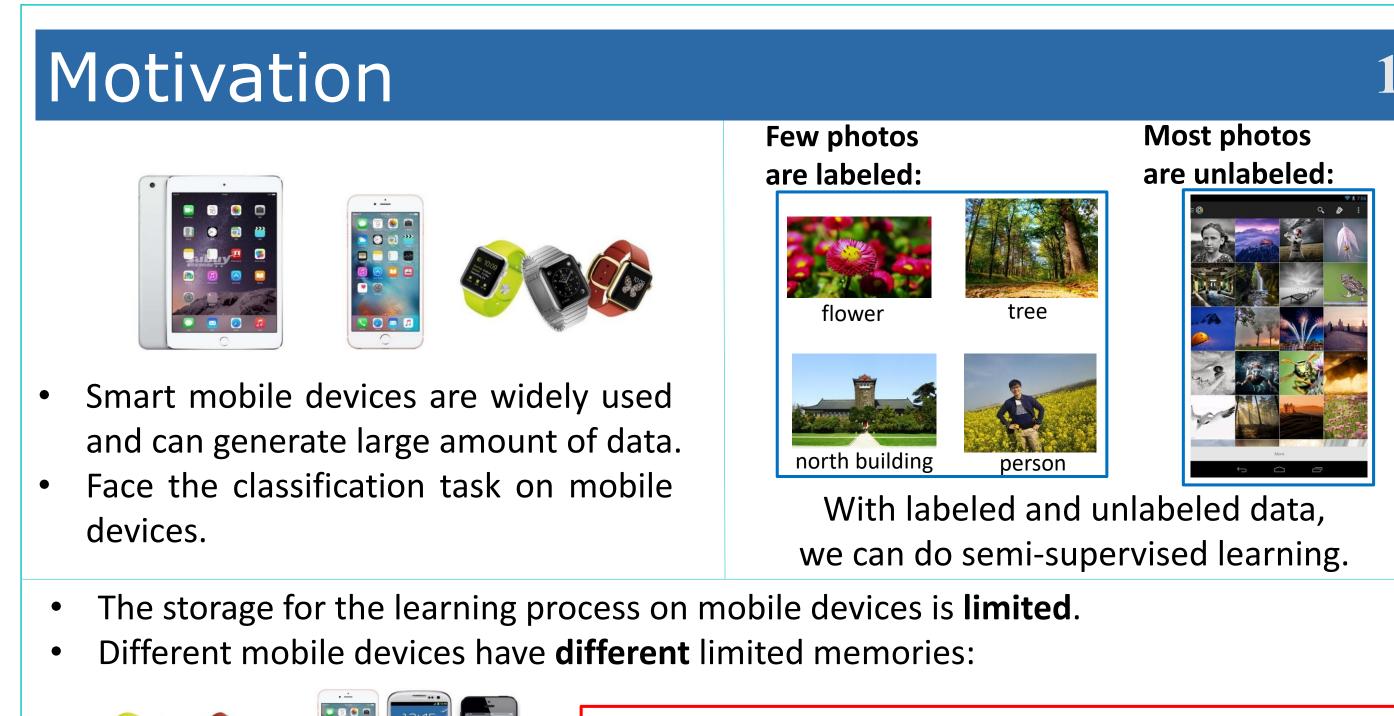
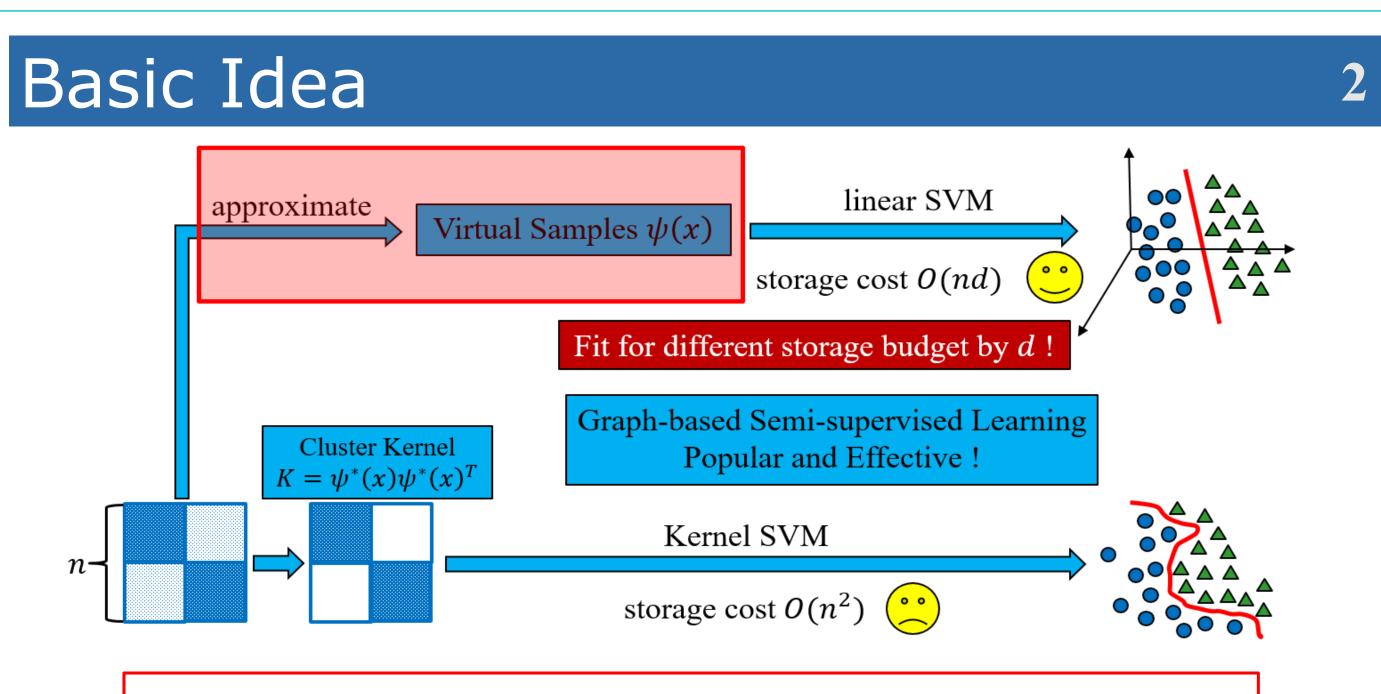


Storage Fit Learning with Unlabeled Data

Bo-Jian Hou, Lijun Zhang, Zhi-Hua Zhou





Obtaining "virtual samples" to transform kernel SVM to linear SVM;

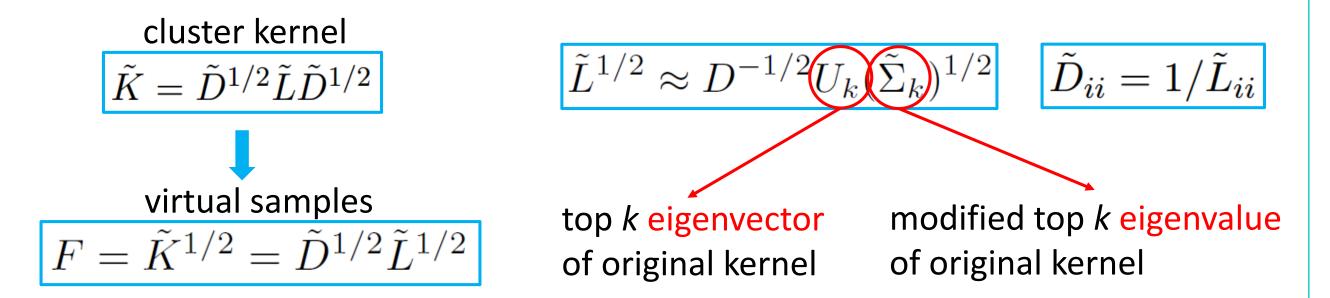
• Then storage costs from $O(n^2)$ to O(nd);

Fit for different storage budgets by d !

Proposed Methods

3

Now we are aimed at obtaining "virtual samples".



We only need to find the eigensystem of the original kernel !

Two methods to find the eigensystem (eigenvalues and eigenvectors) of L or K:

Stochastic Optimization for Cluster Kernel (SoCK)

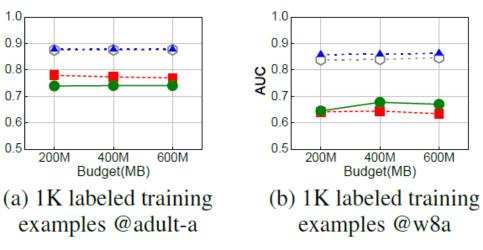
To obtain the top eigensystem of L, we need to find a low-rank matrix \hat{L} to approximate L.

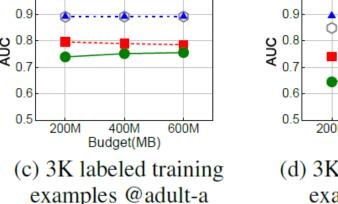
Singular Value Thresholding (SVT)

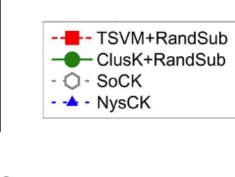
Stochastic Composite Optimization (SCO)

Experiment

With Storage Budget:







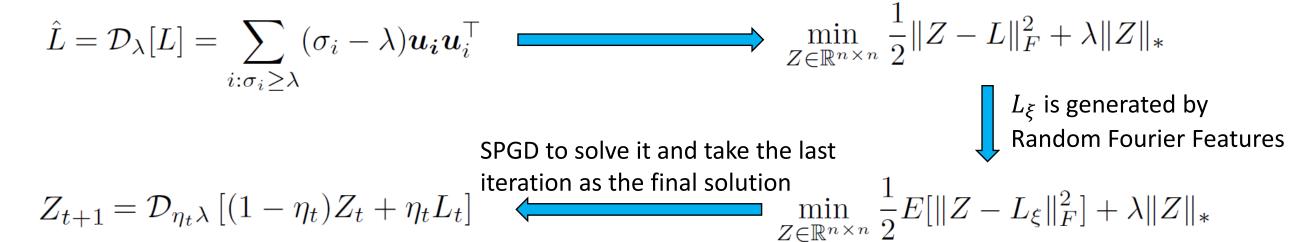
(d) 3K labeled training examples @w8a

Budget(MB

SoCK and NysCK outperform other two methods under all budgets.

Without Storage Budget:

Dataset [size, dim]	KNN	Harmonic	CMN	TSVM	ClusK	SoCK	NysCK
australian[690,42]	.743(7)	.754(5)	.754(6)	.851(4)	.873(3)	.902 (1)	.897(2)
credit-a[653,15]	.805(7)	.874(5)	.864(6)	.894(3)	.901 (1)	.884(4)	.896(2)
credit-g[1000,20]	.591(7)	.670(5)	.670(6)	.700(4)	.711(2)	.723 (1)	.705(3)
diabetes[768,8]	.640(7)	.737(5)	.737(6)	.781(2)	.801 (1)	.775(3)	.757(4)
german[1000,59]	.587(7)	.665(4)	.665(5)	.655(6)	.691(2)	.710 (1)	.669(3)
kr-vs-kp[3196,36]	.821(7)	.917(6)	.917(5)	.928(4)	.990 (1)	.985(2)	.980(3)
splice[3175,60]	.678(7)	.782(5)	.782(6)	.825(3)	.899 (1)	.891(2)	.823(4)
svmguide3[1284,22]	.605(7)	.645(4)	.643(5)	.629(6)	.769(2)	.701(3)	.771 (1)
T-4-11-	50	20	15	20	10	17	



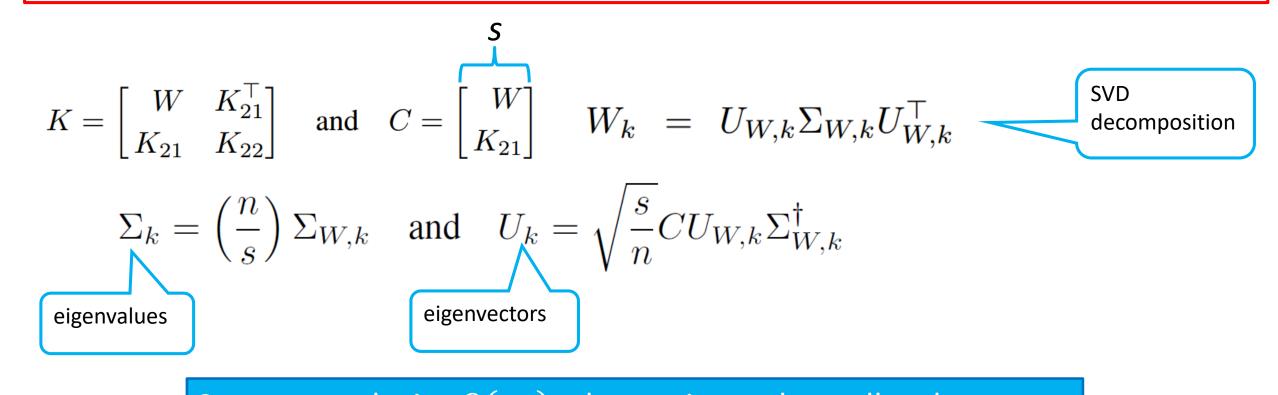
Then we need to do SVD decomposition on $(1 - \eta_t)Z_t + \eta_t L_t$ where L_t and Z_t can be split into two matrices: $L_t = \zeta_t \chi_t^\top \zeta_t, \chi_t \in \mathbb{R}^{n \times a_t}$, $Z_t = U_t V_t^\top U_t, V_t \in \mathbb{R}^{n \times b_t}$.

So in each iteration we only need to do SVD decomposition on $[\sqrt{(1-\eta_t)}U_t, \sqrt{\eta_t}\zeta_t]$.

Space complexity $O(n(a_t + b_t))$ where a_t and b_t is much smaller than n, through adjusting b_t , we can fit for different storage budgets.

Nystrom Cluster Kernel (NysCK)

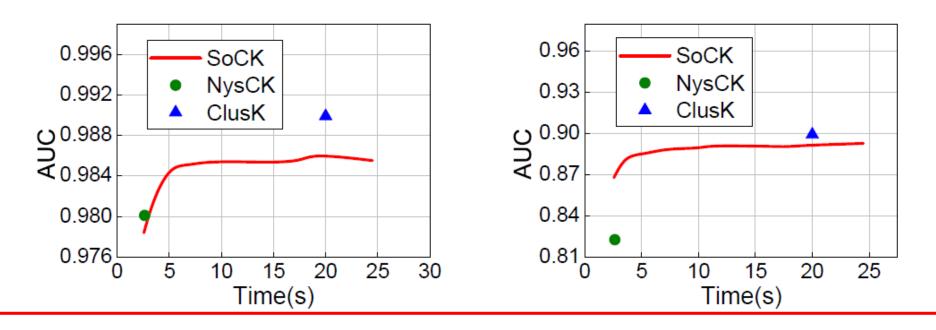
To obtain the top eigensystem of *K*, we sample instances and use Nystrom to directly calculate the eigensystem of *K*.



Total rank	56	39	45	32	13	17	22

The proposed algorithms achieve competitive performance on all data sets.

SoCK vs NysCK:



- NysCK gets an approximate solution with a not high AUC value in a short time.
- SoCK can refine its solution continuously with the decreasing of approximation error and outperforms NysCK after a few seconds.
- SoCK is more effective while NysCK is more efficient.

Conclusion

- A new setting: storage fit learning with unlabeled data.
- Key: given different storage budgets, the behavior of the algorithm should be adjusted differently.

Space complexity O(ns) where s is much smaller than n, through adjusting s, we can fit for different storage budgets.

Space and time	Methods	Space	Time
complexity	ClusK		$O(n^3)$ $O(n(n d + h^2))$
comparisons	*		$ \begin{array}{l} O(n(nd + k^2)) \\ O(n[nd + da_t + (a_t + b_t)^2 + k^2]) \end{array} $

- Concern algorithms relying on spectral analysis which suffer seriously from storage burden of kernel matrix.
- Utilize the techniques of low-rank approximation to adapt these algorithms to fit for a given storage budget.

