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Abstract—This paper explores a new online learning problem
where the data streams are generated from an over-time varying
feature space, in which the random variables are of mixed data
types including Boolean, ordinal, and continuous. The crux of this
setting lies in how to establish the relationship among features,
such that the learner can enjoy 1) reconstructed information
of the missed-out old features and 2) a jump-start of learning
new features with educated weight initialization. Unfortunately,
existing methods mainly assume a linear mapping relationship
among features or that the multivariate joint distribution could
be modeled as a Gaussian, limiting their applicability to the mixed
data streams. To fill the gap, we in this paper propose to model the
complex joint distribution underlying mixed data with Gaussian
copula, where the observed features with arbitrary marginals are
mapped onto a latent normal space. The feature correlation is
approximated in the latent space through an online EM process.
Two base learners trained on the observed and latent features
are ensembled to expedite convergence, thereby minimizing
prediction risk in an online setting. Theoretical and empirical
studies substantiate the effectiveness of our proposed approach.
Code is released in https://github.com/xiexvying/OVFM.

I. INTRODUCTION

The advent of Big Data has triggered a flurry of online
machine learning algorithms that can mine hidden patterns
from data streams. Whereas the initial focus of these algorithms
was to deal with an ever increasing instance space – new data
points arrive over-time from which a model is trained on-
the-fly, recent advances have extended this traditional online
learning paradigm to a novel setting of doubly-streaming
data mining, where the data streams do not only increase
their volume by having new instances, but also increase
their dimension in terms of new features appearing. To
learn such data, pioneer studies [1]–[4] prescribed that, once
the new features appear, they shall persist in all later data
instances, leading to a monotonically increasing feature space.
Subsequent studies relaxed this setting by allowing the pre-
existing features to be missed out afterwards with a batch-by-
batch regularity [5]–[9] or in an arbitrary fashion [10]–[14],
leading to a feature space that flexibly varies along the time
horizon; Such relaxation generalizes the novel setting to a
wider range of applications including sensor networks [15],
novelty detection [16], cybersecurity [17], to name a few. This
general learning paradigm has been termed as online learning
in variable feature spaces (OLVFS) [14].

Despite effective, these prior arts mainly posit that all
features, including the pre-existing and newly arriving ones,
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Fig. 1: Illustration of the optimization process over two 2D
contours formed by 1) left: continuous vs ordinal variables
and 2) right: two continuous variables. The ordinal variable
introduces high feature variation thus garbles the gradients.

must come from the same data family. In other words, all data
instances can contain digits of one data type only. Unfortunately,
due to the messy and heterogenous nature of the real-world
data, such an assumption is way too restrictive. Take, as a
tangible example, the clinical data streams where the instances
collected by various medical service providers can include
data being Boolean (e.g., skinny vs obese), ordinal (e.g., 0–IV
cancer stages), and continuous (e.g., in-vivo insulin levels) and
thus are of mixed types [18]. Enforcing the existing OLVFS
algorithms to learn from such mixed data streams does not
work well and shall be limited in two aspects as follows.

First, the crux of existing OLVFS methods lies in establishing
the relationship among features, so that the knowledge learned
from the old features could be leveraged to initiate a jump-start
of learning new features. Yet, the joint distribution of mixed
data can be complex and difficult to be delineated. For example,
Gaussians which have been commonly used in the literature [5],
[12], [14] fail to model the joint distribution between ordinal
(discrete) and continuous variables. A plausible solution is
to treat the ordinal data as generated from coarse binning of
continuous data [19]. Alas, this solution does not work well
either because 1) it sacrifices invaluable information of the
orders; 2) it can afford very limited number of bins/categories
only; and 3) it ignores the imbalanced data distribution and
discriminative power across various bins1.

1 For example, the difference among cancer stages 0–III are trivial but
substantially grow in stages IV and V; Therefore, the distance between stage
0 to I shall differ from that between III to V.

https://github.com/xiexvying/OVFM


Second, mixed data streams result in high feature variation,
leading to slow convergence rate and thereby in online
classification incurring large regret. Figure 1 illustrates how
the stochastic gradients are garbled by two uneven features
being ordinal and continuous in the 2D loss contours, from
which we observe that optimizing over the mixed data takes
more steps to converge due to the aggressive updates along
the direction of the ordinal variable. In contrast, continuous
variables allow to tune the updating directions in a finer level
of granularity hence yield faster convergence rate. Note, feature
normalization techniques cannot generalize to doubly-streaming
data as they prescribed either a fixed instance space (i.e., offline
pre-normalization) [20] or a fixed feature space [21].

To overcome the two challenges, we in this paper propose
a novel algorithm, termed Online learning in Variable Feature
spaces with Mixed data (OVFM), which leverages Gaussian
copula [22]–[24] to model the feature correlation in a latent
space, encoded by continuous variables, without making
assumption on the original distribution or data family of
any feature. Specifically, the observed features (both ordinal
and continuous) are deemed as generated from drawing
the marginals of a latent normal vector after a coordinate-
wise monotonic transformation. The ordinal features are thus
associated with continuous variables via thresholding [25],
where each ordinal level corresponds to an interval of values
of the latent normal variable. An online learner trained on this
latent space thus enjoys an improved performance over that
trained on the observed features only, as it benefits from 1)
being provided extra information rendered from reconstructing
the missing features or initializing the learning weights for
new features with educated guess and 2) eliminating aggressive
updates encouraged by ordinal variables.

Specific contributions of this paper are as follows:
1) This is the first work to explore the problem of online

learning in a feature space that varies its dimension
over-time and includes mixed data types. The technical
challenge of this new problem has been reasoned from
a perspective of hyperplane optimization (in Section II).

2) A novel OVFM algorithm is proposed to tackle the new
online learning problem through using Gaussian copula
to establish the relationship between old and new features
in a continuous latent space (in Section III).

3) A theoretical study in Section IV shows that i) the
empirical estimators that infer the missing/new features
from the old features are unbiased (Lemma 1 and
Lemma 2) and ii) our approach provably enjoys a tighter
regret bound than an online algorithm that trains learner
on the observed features only (Theorem 1).

4) Extensive experiments are carried out over 14 datasets
and the results demonstrate the viability, effectiveness,
and superiority of our proposal (in Section V).

II. THE LEARNING PROBLEM

Let {(xt, yt) | t = 1, 2, . . . , T} denote an input sequence,
where xt = [x1, x2, . . . , xdt ]

> ∈ Rdt is a dt-dimensional
vector observed at the t-th round, accompanied with a label yt ∈
{−1,+1}. In a variable feature space, di does not necessarily
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?
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Fig. 2: Prediction errors incurred by a feature space changed at
two consecutive rounds. (a) A learner that can correctly separate
the green and red dots in the (x1, x2)-space now observes three
new dots from the (x2, x3)-space, two of which are classified
as red; (b) True hyperplane telling correct prediction suggests
that all the three new dots should be classified as green.

equate to dj for any two time steps i and j. In the setting of
mixed data, we let xt := (xC ,xD), where the subscripts C
and D denote the continuous and discrete (i.e., Boolean or
ordinal) variables, respectively.

At the t-th round, the learner φt observes xt and makes
prediction. An instantaneous loss indicating the discrepancy
between the prediction and the true label is suffered, and the
learner updates to φt+1 based on the loss. Our goal is to find a
series of functions φ1, . . . , φT that predicts the data sequence
accurately by means of empirical risk minimization (ERM) [26],
defined as minφ1,...,φT

1
T

∑T
t=1 `

(
yt, φt(xt)

)
, where `( · , ·)

denotes a loss metric and often is prescribed as convex for
simplicity such as square loss or logistic loss.

Mixed-Data Challenges and Our Thoughts
Two challenges impede the existing online learning algorithms
to work well in our learning problem, described as follows.

Challenge I – Modeling Feature-wise Relationship with
Mixed Data: Without loss of generality, we consider that the
feature space can vary arbitrarily, where at any round new
features appear and pre-existing features missed out without
following any regularity. This setting leads to a highly dynamic
learning environment that renders the learner’s incapability
of making accurate predictions. Take, as a simple example
shown in Figure 2, that the mis-classification is incurred by
the uneducated guess, where the learner trained in the (x1, x2)-
space is enforced to predict the (x2, x3)-points. The fact that
the learned information of x1 cannot be used and there exists
no prior knowledge of the new feature x3 leads to a prediction
of φt(xt) = sign(w>t xt) = sign(w1 · 0 + w2 · x2 + 0 · x3),
where only the shared feature x2 is exploited, ending up with
substantial prediction errors.

To aid the issue, existing OLVFS methods such as [2],
[12], [14] proposed to establish the relationship between the
observed features and the features being either missing or
new. Such feature-wise relationship lend these methods to
enjoy an educated approximation of the true hyperplane via
1) reconstructing the missing feature x1 and 2) initializing the
weight of new feature x3 strategically.



Unfortunately, none of these methods can work well in a
mixed-data setting. Let Ut ⊆ Rd1 ∪ Rd2 ∪ . . . ∪ Rdt denote a
universal feature space that includes all appeared features
up to the t-th round. Establishing the relationship among
features is equated to learning a mapping ψ : Rdt 7→ Ut.
We let ψ(xt) := (xO,xM ) = (xC ,xD,xM ), where xO and
xM denote the observed and missing features, respectively,
and |xM | = |Ut \ Rdt |. Prior OLVFS methods all assume
the conditional probability of xM given xO can be modeled
by a continuous Gaussian and hence cannot deal with the
discrete variables. A plausible solution is to treat ordinal data
as continuous when establishing the mapping ψ and then apply
cutoffs to bin the reconstructed missing variables into discrete
categories. However, this solution can handle very limited
number of categories and entails extensive expert knowledge
to craft sensible cutoff thresholds. Also, this solution overlooks
the disparateness and the ordering information existing across
categories, thereby incurring substantial reconstruction error.

Challenge II – Gradient-based Optimization over Discrete
Variables: To preserve the “online property” when minimizing
the empirical risk, existing OLVFS algorithms all rely on the
gradient information to perform stochastic updates. However,
carrying out gradient-based optimization methods over ordinal
data is non-trivial due to their discreteness. Intuitively, partial
derivatives on discrete variables are in a coarser level of
granularity than those on continuous variables and thus tend
to encourage more radical updates.

A simple example reduced from the “credit-a” and “german”
datasets in Section V is given in Figure 3 to rationalize this
intuition. Specifically, online convex programming [27] is
employed as the optimizer, and the variations of the averaged
cumulative gradients (ACGs) [28] corresponding to the ordinal
and continuous features along the time horizon are illustrated.
We observe that the discrete variables in both datasets incur
substantial turbulence of ACGs over time, which suggests
aggressive updates during the online learning process. In
contrast, the variation of ACGs corresponding to continuous
features are smoother, finer-tuning the learner at small scale.
As such, the stochastic updates tend to be garbled in the sense
that, during learning, the updating directions that correspond
to negative gradients of ordinal features dominate in the high-
dimensional space, leading to large steps that walk in an
oscillating fashion (as we can observe that the ACGs of
ordinal features vibrate around the zero values). When such
garbled updates accumulate, the online learner converges slowly,
thereby tending to make more classification errors.

Our Idea: To tackle the above two challenges, we desire a
model that is capable of 1) delineating the joint distribution
between continuous and discrete variables, so as to establish
feature-wise relationship in mixed data streams, and 2) normal-
izing the oscillating gradients over discrete dimensions into
a continuous domain, so as to encourage finer updates and
faster convergence rate. We advocate that Gaussian copula
(GC) [22]–[24] provides such a model that possesses the two
nice properties at once. Namely, GC can model the complex
multivariate distribution of mixed data in a latent space spanned
by continuous normal variables. An online learner is trained
directly on the latent space, enjoying two-fold advantages.

(a) credit-a: discrete (b) credit-a: continuous
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Fig. 3: Trends of averaged cumulative gradients (ACGs) w.r.t.
the number of rounds in two datasets, credit-a and German.
Blue dash-line and green line represent the ACGs of the
original features (discrete or continuous) and the latent variables
modeled by GC (continuous normal), respectively.

First, the latent representations of the missing features can be
reconstructed from those of the observed features via the GC-
modeled distribution, such that the learned information of the
missing features could be exploited, leading to more accurate
predictions. Second, the latent variables are continuous and
hence allow gradient-based updates in a fine-level of granularity,
eliminating the garbled gradients caused by optimizing over
discreteness and thereby encouraging faster convergence rate
in an online ERM process (as shown in Figure 3).

III. THE PROPOSED APPROACH

Overview. In a nutshell, our approach can be framed in the
objectives taking the following form,

min
φ1,...,φT

1

T

T∑
t=1

`
(
yt, φt(zt)

)
+ Ω(φt), (1)

max
f ;Σ

Pxt∈B
[
xt | zt; f−1,Σ

]
, (2)

s.t. (xC ,xD,xM )
i.i.d.∼ GC(zt; f ,Σ). (3)

In this section, we extrapolate the objectives in a sequence
as follows. i) The constraint Eq. (3) presumes that the data
sequence x1, . . . ,xT are independently drawn from an un-
known distribution, which yet can be modeled by a Gaussian
copula (GC), with its details presented in Section III-A. ii)
The likelihood maximization function Eq. (2) estimates the
parameters of GC in a buffer B through online Expectation-
Maximization (EM); A latent space that can represent each
input xt (having continuous and discrete variables) with
continuous normal vector zt is learned. We scrutinize this
part in Section III-B. iii) An online learner is trained on the
latent representations as indicated in Eq. (1); A regularization
term Ω(φt) is imposed on the learner to encourage a sparse



solution, so as to deal with an infinitely growing feature space.
We close this section by introducing an ensemble strategy
that boosts our learner with a provably better performance.
Technical details of this part are given in Section III-C.

A. Mixed-Data Gaussian Copula

We model the joint distribution underlying the mixed data
streams with Gaussian copula (GC) for two purposes. First, at
the t-th round, given an instance xt := (xC ,xD) in which each
feature drawn from an arbitrary distribution, GC can capture the
dependency structure among features and meanwhile respects
the specific marginal of each variable independently. Note, this
property empowers GC to construct a multivariate distribution
for mixed data (i.e., discrete vs continuous) in our setting, which
excels, e.g., multivariate Gaussian in which every variable has
to be continuous that strictly follows a Gaussian.

Second, up to the t-th round (t > 1), because of the varying
nature of the feature space in doubly-streaming data, each input
xt carries a subset of the features observed so far (i.e., the Ut). A
learner trained on xt hence suffers from the loss of information
associated with the missing features and tends to perform
inferiorly. GC aids this issue with its data reconstruction
mechanism. Specifically, GC maps the observations onto a
latent space that contains sufficient statistics to estimate the
missing entries. A GC is formally defined as follows.

Definition 1 (Gaussian Copula, GC). For any random vector
x ∈ Rd that follows the Gaussian copula GC(z, f ,Σ), there
exists an element-wise monotone function f : Rd 7→ Rd and a
correlation matrix Σ such that f(z) = x for z ∼ Nd(0,Σ).

As such, the monotone f establishes the mapping between
the observed vector xt and its latent representation zt, where
Σ specifies the normal distribution of zt. In addition, a nice
property of GC is that the correlation Σ is invariant to element-
wise strictly monotone transformation [29]. This property
allows GC to deal with discrete variables in xt with a monotone
cutoff operator taken on probability mass functions. Specifically,
for any ordinal variable xi ∈ xD with range |k| and mass
function {pl}kl=1, the corresponding mapping f is defined as:

fi := cutoff(z; S) = 1 +
∑
sl∈S

1(z > sl) (4)

where z ∈ R is a continuous random variable with cumulative
distribution function (CDF) Fz and S =

{
sl = F−1

z (
∑l
t=1 pt) :

l ∈ |k−1|
}

. So by the invertibility of a monotone function, the
latent representation of xt could be calculated as f−1(xt) =(
f−1(xC), cutoff−1(xD)

)
, where we distinguish the discrete

mapping cutoff( ·) from the monotone function set f( ·) for the
sake of clarification. In particular, for a continuous variable, its
latent representation takes a specified real-value; for a discrete
variable. its latent representation lies in the Cartesian product
of an interval. Note, the dimension of f−1(xt) equates to that
of xt but does not match to that of Ut. Below, we present how
to construct zt = ψ(xt) ∈ R|Ut| by establishing relationships
between the observed (xO,xC) and the missing xM .

Feature Reconstruction with GC. The key idea here is to
infer xM , the mismatch between the input xt and the universal

space Ut, by mapping the conditional mean vector of the
corresponding zM via the marginals of the observed xO. The
reconstruction takes two approximation steps, namely, 1) taking
the expectation of the observed latent representation zO given
the observation xO and 2) taking the expectation of missing
latent representation zM given zO, defined as follows:

ẑM = E
[
E[zM | zO,Σ] | xO,Σ

]
= ΣM,OΣ−1

O,OE [zO | xO,Σ] , (5)

where ΣM,O and ΣO,O denote the sub-matrices of correlation
Σ with rows and columns corresponding to the feature indices
of (xM ,xO) and (xO,xO), respectively. By reconstructing
this empirical ẑM from the conditional expectation Eq. (5), the
latent representation of xt enjoys a full view with its dimension
matching that of Ut, namely, zt = ψ(xt) = (ẑC , ẑD, ẑM ),
where ẑC = f−1(xC) and ẑD = cutoff−1(xD). As such, we
can further sampling from the copula GC(zt, f ,Σ) to have
an approximation of the input, denoted by xrec

t = (x̂O, x̂M ).
The discrepancy between the observed xt and its reconstructed
version x̂O could indicate how well the function f and the
correlation Σ have been estimated. This allows us to optimize
these parameters by adapting the EM theory in a stochastic
hence online fashion, which is extrapolated in the next section.

B. Online Expectation-Maximization for Parameter Estimation

To estimate the monotone function f and its inversion f−1,
we adapt the common steps from [19] defining that f−1

i =
Φ−1◦Fi, where Φ is a standard normal CDF and Fi corresponds
to the true CDF of the i-th feature, yet is in general unavailable.
To solve the issue, we estimate its empirical version F̂i in a
buffer B in which, at each round, an incoming instance is
joined in and the oldest input is popped out. The estimator for
continuous variables is defined as follows.

f̂−1
i (xi) = Φ−1

(
H · F̂i (xi)

)
, (6)

where the scale H = |B|/(|B|+ 1) guarantees a finite output.
For discrete variables, we could define the cutoff Si as a special
case of Eq. (6) by replacing the probability mass pil of the i-th
feature with its sample mean, defined as:

Si =

{
Φ−1

(∑|B|
t=1 1 (xt[i] ≤ l)
|B|+ 1

)
, l ∈ |k − 1|

}
, (7)

where xt[i] denotes the i-th (discrete) feature of the t-th input.
To estimate the correlation matrix Σ, introducing the buffer

B is also beneficial. Indeed, in an offline setting, the correlation
Σ enjoys a closed-form solution, namely, Σ = XZ†(Z†)>X>,
where X and Z represent the input data matrix and its
corresponding latent representation, respectively [29]. In our
doubly-streaming setting, however, no such merit can be
harnessed, suggesting that an iterative approximation algorithm
should be considered. As such, we propose to estimate the
empirical Σ̂ through running online Expectation-Maximization
(EM) in an iterative manner using the buffer B.

Specifically, we strive to maximize the likelihood that the
observed entries (denoted by XO) of the buffered matrix
XB ∈ R|Ut|×|B| can be accurately reconstructed by taking



the conditional expectation of Σ. To disambiguate the notation,
we denote Σ(t−1) as the empirical correlation obtained in the
precedent round and Σ̂ as the objective to be approximated at
the current round. The log-likelihood function is defined as:

Q
(

Σ̂; Σ(t−1),XO

)
:=

1

|B|

|B|∑
t=1

E
[
L(Σ̂;xt, zt) | zt,Σ(t−1)

]
= const−1

2
log det(Σ̂)− 1

2
Tr
(
Σ̂−1G(Σ(t−1),xt)

)
, (8)

with Σ(0) initialized as an identity matrix. Two steps iterate in
an alternative fashion to maximize Eq. (8) as follows.

E-step. We compute the empirical zt as a conditional expecta-
tion given xt and Σ(t−1) using Eq. (5), and so that to express
the likelihood Q(Σ̂; Σ(t−1),XO) in terms of Σ̂ by replacing
G(Σ(t−1),xt) = E[ztz

>
t | xt,Σ(t−1)] in Eq. (8).

M-step. We solve Σ̃ = arg maxΣQ(Σ; Σ(t−1),XO), which
guarantees to increase the likelihood by the EM theory (cf.
Chapter 3 in [30]). Then we follow the idea of [31] to replace
the correlation at the current round as a harmonic sum of the
correlation obtained from the last round Σ(t−1) and Σ̃. This
treatment can produce a sequence Σ(1), . . . ,Σ(T ) with smooth
updates. However, we note that this sequence represents a
series of local maximizer of the likelihood that, albeit converges
monotonically, is unconstrained. To fit the empirical maximizer
into a normal covariance, we resort it to an approximation as:

Σ̂ = PE
(

(1− γt) Σt−1 + γtΣ̃
)
, (9)

with γt ∈ (0, 1] being a decaying step size and PE( ·) scales
the positive diagonal of the empirical Σ̂ to 1.

C. Online Ensemble Learning with Latent Space

Thus far, we have presented how to reconstruct the missing
features via establishing a feature-wise relationship with GC
and how to estimate parameters of the GC in an online fashion
using a buffer. Given an input xt, its reconstructed version in
the latent space is denoted as xrec

t := [x̂C , x̂D, x̂M ]> ∈ R|Ut|,
where x̂C = f(ẑC) and x̂D = cutoff(ẑD) denote the observed
continuous and discrete variables being mapped back from the
latent space, respectively, and x̂M = f(ẑM ) is the missing
variables reconstructed from the conditional expectation given
other observed features. The online learner trained with the
reconstructed feature vector can enjoy a complete information
so as to make accurate predictions. Intuitively, in a linear
classification regime, we could define the prediction at the
t-th round as ŷt = sign

(
w>t x

rec
t

)
, where wt ∈ R|Ut| is the

classifier trained on Ut.
However, this straightforward learning method may not

work well and is limited in two aspects. First, although
additional information can be provided via reconstructing x̂M ,
the precision of the reconstruction is decided by the function set
f and the correlation Σ, of which the approximation could be
negatively affected by an improperly chosen buffer size |B| or
by the limited number of seen instances at initial rounds. As a
result, the prediction accuracy would be deteriorated if x̂M has
not been precisely reconstructed. Second, the reconstructed x̂D
again consists of discrete variables, over which the optimization

Algorithm 1: The OVFM Algorithm
Initialize : Classifiers wO and wZ , correlation Σ,

ensemble factor α = 0.5, and cumulative
risks RTO = RTZ = 0.

Parameters : Buffer B, sparsity c, and endpoint ε.

1 for t = |B|, . . . , T do
2 Receive a mixed data instance xt = (xC ,xD);
3 Join xt in B and establish GC(f ,Σ);
4 Estimate f for continuous xC and discrete xD with

Eq. (6) and Eq. (7), respectively;
5 repeat

/* Esitimate Σ̂ with EM */
6 for t = 1, . . . , B do
7 E-step: Replace G(Σ(t−1),xt) in Eq. (8)

with zt = (f−1(xC), cutoff−1(xD), ẑM )
calculated via Eqs. (4) and (5);

8 M-step: Estimate Σ̂ using Eq. (9);

9 until convergence or ‖Σ̂− Σ(t−1)‖Forb ≤ ε;
/* Predict the oldest input in B */

10 Pop vector xt−|B|+1 and reconstruct its latent
zt−|B|+1 =

(
f−1(xC), cutoff−1(xD), ẑM

)
;

11 Predict the label as sign(ŷt−|B|+1) using Eq. (10) ;
12 Reveal the true label yt−|B|+1;
13 Suffer risks and accumulate RTO and RTZ ;
14 Reweigh coefficient α using Eq. (11);
15 Update classifiers wO and wZ using SGD;
16 Sparsify wO and wZ using Eq. (12);

process tends to converge slowly, incurring more prediction
errors in an online setting.

To address the two issues, we propose to ensemble two base
predictions – one defined on the observed feature space, thereby
eliminating the errors introduced by inaccurate reconstruction,
and the other defined on the continuous latent space, thereby
enjoying a finer-granular and faster convergence rate during
optimization. The ensemble prediction is defined as follows.

ŷt = α 〈wO,xt〉+ (1− α) 〈wZ , zt〉 , (10)

where wO ∈ Rdt and wZ ∈ R|Ut| are the classifiers
corresponding to the input xt and the latent zt = (ẑC , ẑD, ẑM ).
The intuition behind Eq. (10) is to let the ensemble coeffi-
cient α decide the impact of the observed features and the
mapped latent normal vector in making decisions. Denoted by
RTO =

∑T
t=1 `(yt, 〈wO,xt〉) and RTZ =

∑T
t=1 `(yt, 〈wZ , zt〉)

are the cumulative risks suffered by making predictions on xt
and zt over T rounds, respectively. We update the coefficient
α at the round T + 1 based on the risk exponentials [12], [26]:

α =
exp(−τRTO)

exp(−τRTO) + exp(−τRTZ)
, (11)

where τ = 2
√

2 ln 2/T is a turned parameter. In implementa-
tion, the loss function is defined as the cross-entropy.

Learning Sparse Classifiers. With new features keep arriving
ceaselessly, the size of Ut may soon grow into an unmanageable



size, where estimating and storing the function set f̂ and
the correlation Σ̂ and learning the classifier wt may lead
to both computational and memory overheads. To restrict
the dimensional growth of Ut, we dynamically drop less
informative features, defined as those associating with small
values of the weight coefficients [32]. To do this, the base
classifiers are projected onto an `1-ball at each round, defined
as:

wp ← min{1, c/‖wp‖1}wp, p ∈ {O,Z}, (12)

which encourages sparsity – most values of the weight vectors
shall concentrate to the several largest entries. The positive
parameter c determines how sparse the resultant classifiers are.
Only a subset of γ features are retained after projection, while
the other features with trivial values are dropped [1], [14], [33].
The main steps of our OVFM algorithm are summarized in
Algorithm 1.

IV. THEORETICAL ANALYSIS

In this section, we demonstrate the theoretical merits of our
OVFM approach. The main results are two-fold. First, we show
that the empirical estimation of the monotone function f̂ is
tightly bounded to the true monotone function f over both
continuous and discrete variables in Section IV-A. Second, we
analyze the regret bound to rationalize the usefulness of the
ensemble strategy in Section IV-B, and the result validates the
asymptotic property of our OVFM approach. Due to space
limitation, proof sketches are provided with details deferred to
an electronic companion (available as supplementary material).

A. Tightness of Empirical Estimation

The rationality of Eqs. (6) and (7) lies in the argument that
the empirical estimation of the monotone function f̂ is a good
approximation of the true f that establishes a mapping between
the observed variables and the latent normal in a Gaussian
copula. This argument is indeed true with a static, large enough
dataset [34]; Yet, in an online setting with a buffer B, it remains
unknown that whether the estimated f̂ converges to the true
f or not. More specifically, how large is the gap between
f̂ and f . This section serves to answer this question. The
approximation bounds of continuous and discrete variables are
given in Lemma 1 and Lemma 2, respectively, as follows.

Lemma 1. Given a continuous random vector x ∈ Rd with
CDF F (x) that follows the Gaussian copula x ∼ GC(z, f ,Σ),
in which each variable satisfies xi ≡ f̂i (zi), where fi =

F−1
i ◦ Φ. Let m = minj∈|B| x

(j)
i and M = maxj∈|B| x

(j)
i

denote the smallest and largest values of the i-th observed
variable in the buffer B, respectively, the strictly monotone
function f̂i in Eq. (6) satisfies

P
(

sup
m≤x≤M

∣∣∣f̂−1
i (x)− f−1

i (x)
∣∣∣ > ε

)
≤ 2e−c1ε

2|B|, (13)

with ε taking an arbitrary value in (a1|B|−1, b1) and a1, b1, c1
being constants associated with F (m) and F (M).

Proof Sketch: The result is immediated by applying the
Dvoretzky-Kiefer-Wolfowitz (DFW) inequality [35] which

bounds the gap between an empirical CDF and the true CDF.
Leveraging the monotonicity of F (x), we have |B|−1 <
ε < K1 ≡ min

{
F (m)/4, (1 + F (M))/4

}
, leading to define

rc = |B|
|B|+1F|B|(x) so that rc ∈

[
F (m)/2, (1 + F (M))/2

]
.

It follows that supx∈[m,M ]

∣∣Φ−1 (rc)− Φ−1(F (x))
∣∣ <

2ε · supr∈[F (m)/2,(1+F (M))/2]

∣∣(Φ−1(r)
)′∣∣ = K2 ≡

1/min
{
φ
(

Φ−1
(
F (m)/2

))
, φ
(

Φ−1
(
(F (M) + 1)/2

))}
,

where
(
Φ−1(r)

)′
= 1/φ

(
Φ−1(r)

)
and φ and Φ here are the

PDF and CDF of a standard normal, respectively. Adjusting
the constants for 2K2|B|−1 < ε < 2K1K2, along with the
definition of f̂−1

i in Eq. (6), complete the proof. �

Lemma 2. Given a ordinal random variable xi ∈ xC in
range |k| with probability mass function {pl}kl=1, associated
with a latent normal variable zi ∈ R that satisfies fi(z) :=
cutoff(zi; S) = xi. The empirical cutoff in Eq. (7) satisfies

P
(
‖Ŝi − Si‖1 > ε

)
≤ 2|k|e−c2|B|ε

2/(|k|−1)2 , (14)

with ε taking an arbitrary value in
(
(|k|−1)a2|B|−1, (k−1)b2

)
and a2, b2, c2 > 0 being constants associated with the mass
function {pl}kl=1.

Proof Sketch: The proof proceeds in three steps. First, we
define s∗l = Φ−1

(∑B
i=1 1

(
xi ≤ l

)
/|B|

)
for l ∈ |k − 1|, it is

verified that s∗0 = −∞ and s∗k = +∞, and ∆∗l = Φ(s∗l ) −
Φ(s∗l−1) =

∑|B|
i=1 1(xi = l)/|B|. Note that the sequence

|B|∆∗1, . . . , |B|∆∗|k| is multinomially distributed with parame-
ters B and p1, . . . , pk. We borrow the Bretagnolle-Huber-Carol
inequality [36] to have that, for any ε > 0,

∑|k|
l=1

∣∣∆∗l −pl∣∣ < ε

with probability at least 1 − 2|k|e−
1
2 |B|ε

2

. Second, for each
l ∈ |k|, |Φ (s∗l )− Φ (sl)| ≤

∑|k|
t=1 |∆∗t − pt| < ε. Take

ε > |B|−1, we arrive at Φ (sl) − 2ε < Φ (s∗l ) ·
(
|B|/(|B| +

1)
)

=
∑|B|
i=1 1(xi ≤ l)/(|B| + 1) < Φ (sl) + 2ε. Third,

when l ∈ |k − 1|, we have p1 ≤ Φ(sl) ≤
∑k−1
t=1 pt

, and by letting ε < K1 ≡ min{p1/4, pk/4}, we have
p1/2 ≤ Φ(s∗l ) ·

(
|B|/(|B| + 1)

)
≤ 1 − pk/2. There-

fore, ‖Ŝi − Si‖1 =
∑k−1
l=1 |ŝl − sl| ≤ 2(k − 1)ε/K2,

where K2 = 1/min
{
φ
(
Φ−1

(
p1
2

))
, φ
(
Φ−1

(
1− pk

2

))}
.

Adjusting the constants yields P
(
‖Ŝi − Si‖1 > ε

)
≤

2 exp
{
− 1

8K2
2
· |B|ε

2

(|k|−1)2

}
, which completes the proof. �

Lemma 1 suggests that the empirical f̂ converges to the
true f in sup norm and the gap is bounded by the observed
domain in the buffer B. Lemma 2 illustrates that the cutoff
estimator Ŝi approximates Si for each discrete variable. The
larger the buffer size |B|, the tighter the empirical estimations
approxmate the true mapping function being f for continuous
and cutoff for ordinal features. In an online setting where new
data points incoming ceaselessly, we could choose a large B
to ensure an unbiased estimation of the mapping functions.

B. Performance Bound

We compare the prediction performance of OVFM with the
two base learners being trained on the observed and the latent
feature spaces independently. The ensemble strategy lends our
OVFM algorithm a nice property, described as follows.



Theorem 1. Over T rounds, we have
T∑
t=1

Rt ≤ min{RTO, RTZ}+
√

2T ln 2, (15)

where
∑T
t=1Rt denotes the cumulative risk suffered by making

the ensemble prediction defined in Eq. (10).

Proof Sketch: The proof is completed with four observa-
tions. First, we define a quantitative QT = exp(−τRTO) +
exp(−τRTZ), and it is verified that Q1 = 2 and ln(QT /Q1) =
−τ min{RTO, RTZ}− ln 2. Second, by expanding RTp = RT−1

p +
rTp , p ∈ {O,Z}, where rTp is the instantaneous risk suffered
by wO or wZ at the T -th round, we arrive at ln(QT /QT−1) =
ln
[
α exp(−τrTO) + (1− α) exp(−τrTZ)

]
, with α defined in

Eq. (11). Third, we leverage the convexity of loss function
and adapt the Hoeffding Inequality (cf. Appendix A.1.1
in [26]) to deduce ln

[
α exp(−τrTO) + (1− α) exp(−τrTZ)

]
≤

−τRT +τ2/8. Forth, over T rounds we have ln(QT /QT−1)+
. . .+ ln(Q2/Q1) = ln(QT /Q1) ≤ −τ

∑T
t=1Rt + T · (τ2/8).

Collecting the above four observations, we have
∑T
t=1Rt ≤

min{RTO, RTZ} + (τ/8)T + ln 2/τ , in which plugging τ =
2
√

2 ln 2/T completes the proof. �
So by Theorem 1, it follows that limT→∞(

√
2T ln 2/T ) = 0,

indicating that our OVFM is asymptotically no-regret compared
to the two base learners. In fact, if the latent normal space
provides more discriminant information so that RTO −RTZ >√

2T ln 2, we can verify that
∑T
t=1Rt < RTO, which suggests

that the online classifier being assisted with the latent features
modeled by the GC can provably perform better than that
trained on the raw observations.

V. EXPERIMENTS

In this section, we deliver empirical evidences to substantiate
that our OVFM algorithm is a viable and effective solution to
the problem of online learning in variable feature spaces with
mixed data and excels in two doubly-streaming settings, namely,
trapezoidal data streams, where later inputs include increasingly
more features, and capricious data streams, where new features
appear and old features miss-out arbitrarily. Section V-A
introduces the studied datasets. Section V-B elaborates the
experiment setup. Results and findings are given in Section V-C.

A. Datasets

Our evaluations are benchmarked on 14 datasets, including
one synthetic dataset and 14 selected from the UCI repos-
itory [37], with their statistics summarized in Table I. To
validate the generalizability of our OVFM algorithm, we select
the datasets from a diverse range of applications including
economy, kinesiology, bioinformatics, and so on.

We generate a mixed dataset with explicitly known feature
correlation, which can be used to valid whether the Gaussian
copula is capable of accurately modeling joint distribution
among various data types. We generate a covariance matrix Σ
with its diagonal sums up to 1 and a zero mean vector. From
this multivariate normal, we apply PE

(
1
n

∑n
i=1 x

j
(
xj
)> )

to
generate 2000 samples in a dimensionality of 18 including

TABLE I: Characteristics of the studied datasets.

Dataset #Inst. #Feat. Dataset #Inst. #Feat.

ionosphere 351 34 german 1000 24
wdbc 569 30 synthetic 2000 18
australian 690 14 splice 3190 60
credit-a 690 15 kr-vs-kp 3196 36
wbc 699 9 HAPT 7352 561
diabetes 768 8 magic04 19,020 10
dna 949 180 a8a 22,696 123

6 Boolean, 6 ordinal, and 6 continuous features. For con-
tinuous variables, their values are randomly sampled; For
discrete variables being Boolean or ordinal, their values are
sampled from a Cartesian product of two intervals binned from
(Fmax(x) − Fmin(x))/p with p being 2 or 5, respectively.
A weight vector w is generated from a normal, such that
the classification label for each sample x is synthesized as
y = sign(w>x). The simulation of feature space dynamics
are kept the same as that for UCI datasets.

B. Experiment Setup

Compared Methods. We take three online learning competi-
tors to evaluate the effectiveness and generalizability of our
OVFM approach in various settings.
• FOBOS [38] sets up a baseline that trains online learner

on the observed features directly. To adapt it to a variable
feature space, we pad zero values to the missing entries.
Projected subgradient method is devised to encourage a
sparse solution, so that the redundant features with (nearly)
zero coefficients could be truncated.

• OLSF [2] was tailored to deal with a monotonically
increasing feature space. Its key idea is to strategically
initialize the weight coefficients for the new features in a
passive-aggressive manner, where the new coefficients are
reweighed from the old features if the incoming features
convey fresh information that affects the decision boundary
and remain unchanged otherwise.

• OCDS [12] was crafted to perform online learning in
an arbitrarily varying feature space, where the joint
distribution of all historical features is modeled by a
multivariate Gaussian, through which the missing features
at each round are recovered so as to offer the learner a
complete feature information.

Evaluation Protocol. To perform a fair comparison, the
experiments are benchmarked in two doubly-streaming settings.
For the UCI datasets, to simulate trapezoidal data streams, we
follow the setting as in [2] to divide the each entire dataset
into 10 batches, where in the i-th batch only the first i ∗ 10%
features would be retained (i.e., the first data batch will retain
the first 10% features and so forth). To simulate capricious data
streams, we follow the setting as in [12] to randomly remove
at most 50% features in each incoming instance. Moreover, to
ensure a mixed data setup, for the 5 UCI datasets (i.e., credit-
a, svmguide3, german, australian, diabetes) that are naturally
with mixed data, we do not further preprocess; For the rest
9 UCI datasets that have continuous data only, we divide the



TABLE II: Results of cumulative error rate (CER ± standard deviation) on 14 datasets, the lower the better, where random
shuffling has repeated 10 times for cross validation. The best results are bold. • indicates our approach has a statistically
significant better performance than the counterparts (hypothesis supported by paired t-tests at 95% significance level).

Trapezoidal Data Streams Capricious Data Streams

Dataset FOBOS OLSF OVFM FOBOS OCDS OVFM

ionosphere .203± .000• .330± .001• .232± .000 .356± .000• .278± .003• .248± .001
wdbc .176± .001• .222± .000• .129± .011 .157± .000• .169± .004• .082± .000
australian .339± .000• .404± .000• .275± .000 .279± .000• .277± .003• .217± .000
credit-a .363± .000• .392± .000• .300± .000 .297± .000• .262± .002• .240± .000
wbc .068± .000• .332± .000• .066± .000 .131± .000• .102± .000• .078± .000
diabetes .392± .001• .432± .000• .260± .000 .423± .000• .379± .000• .315± .000
dna .268± .000• .220± .000• .262± .000 .239± .000• .261± .006• .199± .000
german .278± .000• .372± .000• .267± .000 .375± .000• .369± .002• .319± .000
synthetic .347± .000• .391± .000• .326± .000 .360± .000• .333± .001• .267± .000
splice .362± .000• .388± .000• .380± .000 .390± .000• .354± .003• .326± .000
kr-vs-kp .308± .000• .317± .000• .442± .001 .316± .000• .359± .003• .313± .000
HAPT .322± .001• .362± .002• .291± .001 .241± .001• .229± .002• .193± .001
magic04 .305± .001• .314± .003• .285± .004 .251± .000• .272± .003• .238± .000
a8a .285± .001• .367± .005• .262± .001 .239± .002• .220± .004• .188± .002

entire feature space into 3 blocks and convert one block to
Boolean type and one to the ordinal type with median and
mean thresholding, respectively. Cumulative error rate (CER)
which calculates the classification accuracy in an online fashion,
namely, CER = (1/t)

∑
i≤tJyi 6= sign(ŷi)K, is employed for

performance evaluation, where J ·K takes the value of 1 if the
argument is true and 0 otherwise.

C. Comparative Results

Table II and Figure 4 present the classification error rates
and the CERs w.r.t. the number of instances, respectively. From
the results, we aim to answer the following research questions.

Q1. Does our approach excel among the state-of-the-arts?
We make three observations from Table II to answer this

question. First, our OVFM achieves the best performance
with CERs of 26.9% and 23.0% on average in dealing with
trapezoidal and capricious data streams, respectively. Supported
by statistical evidence, OVFM excels in 45 out of 56 settings
over the 14 studied datasets. Second, in the trapezoidal and
capricious settings, OVFM outperforms the baseline FOBOS
by ratios of 6.0% and 20.5%, respectively. This result suggests
that the online learner in OVFM enjoys a latent space with
full feature information and continuous data type over the
observed features with mixed data, thereby performing robustly
with various feature space dynamics. Third, although OLSF
and OCDS have their respective mechanisms to deal with a
variable feature space by establishing feature-wise relationship,
our OVFM beats these two counterparts in their respective
settings by ratios of 22.0% and 16.6% on average, respectively.
The results substantiate the generalizability of using Gaussian
copula to model the joint distribution over mixed-type variables
in an online setting. This merit lets our approach enjoy robust
performance across various feature space dynamics.

Q2. How effectively can the Gaussian copula capture the
relationship among features of mixed data types?

The comparisons among FOBOS, OLSF, and OCDS amount to
the answer. First, OLSF is inferior than FOBOS in 1 out of 14
datasets with their CER differing by ratio of 20.6%. Similarly,

OCDS loses FOBOS in 4 settings with an on average 4.7%
improved CER. The inferiority of OLSF and the neglectable
improvement of OCDS are contrary to previous studies [2],
[12] which have suggested a significant superiority of OLSF
and OCDS over FOBOS in their respective scenarios. As
the settings of the feature space dynamics are controlled as
unchanged, we attribute such inconsistent results to the negative
affect of mixed data. Specifically, OLSF and OCDS that
prescribed the mapping relationships among features are linear
and hence can be modeled trough a multivariate Gaussian do
not fit well with mixed data streams, where the marginals of the
continuous and discrete variables follow different distribution
families and cannot be modeled with canonical frequentist
models, e.g., Gaussians. To further verify this, we in Figure 4
illustrate the trends of CER over time in the setting of capricious
data streams, from which we observe that OCDS suffers from
overfitting in Figures 4b, 4e, and 4f. The rising of CER after
a certain time step indicate the incapability of linear models
in capturing a nonlinear relationship between continuous and
discrete variables. In contrast, both FOBOS, that simply assume
a conditional independency of all variables given label, and
our OVFM that employs Gaussian copula with the capability
of modeling complex cross-type joint distribution do not suffer
such performance degradation. These findings validate the
effectiveness of Gaussian copula, which helped our OVFM
approach to attain superior classification performance.

Q3. Can ensemble learning boost classification accuracy?
To answer this question, we compare OVFM with a variant

named OVFM-L(atent), which trains online classifier and makes
predictions on the latent space only. Indeed, the latent space is
likely to yield fast and smooth convergence, because optimizing
over continuous variables allows a finer model-tuning using
gradients, as shown in Figure 4. However, in datasets where
features show strong independency, forcibly modeling their
correlation may lead to erroneously constructed latent variables
and further negatively affect the classification accuracy, as
shown in Figure 4f. As having the feature correlations in a
prior is difficult in general and entails domain knowledge,
ensemble learning is the strategy to lift this requirement so as
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Fig. 4: The trends of CER of 4 methods in the setting of capricious data streams on 7 datasets due to the page limits.

to suit datasets with various patterns. We observe that OVFM-L
may excels in several, while our OVFM converge to lower
error rate in almost all datasets, which validates the tightness
of Theorem 1 and suggest the helpfulness of ensemble strategy
in dealing with mixed data streams.

VI. RELATED WORK

This work relates to online learning and copula modeling,
so we review prior studies in each category and discuss the
differences and relations. We note that, in concept-drift [39],
[40] or non-stationary online learning [41] the changeables are
the statistical properties of variables or the underlying decision
function, respectively, as data streaming in, but the number of
features carried by each input is fixed in a priori, which thus
differ from our learning problem.

Online Learning in Variable Feature Space: Requiring an
input sequence over wide time spans to be described by a fixed
set of features is in general impractical. In response, the pioneer
work [1]–[4] considered a doubly-streaming setting where new
inputs carry consistently more features. Later studies extend this
setting by allowing the pre-existing features to be missed out
afterwards, either by following a batch-by-batch regularity [5]–
[9] or at purely random [10]–[14]. This line of research shares
the main idea of exploiting feature-wise relationship to anchor
stationary information in a varied feature space. Unfortunately,
existing methods all consider a continuous domain and thus do
not scale up to the mixed data setting. Our OVFM filled the
gap with Gaussian copula that maps and correlates arbitrary
marginals across mixed variables and hence is more general.

Copula Modeling with Mixed Data: To explore a con-
tinuous latent space, most of methods assume that the data
are of the same digital type and make a prior guess of the
underlying distribution, as directly modeling the multivariate
joint distribution for mixed marginals is difficult. In this regard,
copulas lend us a tool due to its modeling power. Prior
studies [34], [42], [43] proposed Gaussian copula by combining
the cumulative distribution function (CDF) of each feature, and
separating marginal distribution from multivariate distribution,

which is suitable for modeling with different marginal distribu-
tions, harmonizing continuousness and discreteness. Subsequent
works include Bayesian copula with factorized models [44],
impute missing entries in a mixed data matrix by extending
Rank-PC [45], and solving the time-varying complexities and
high-dimensionality in estimating the covariance matrices [46].
However, most studies focus on modeling offline mixed data,
with very few attempted online settings [19], [47]. None prior
work has considered leveraging Gaussian copula to deal with
an arbitrarily varying feature space so as to learn effective
online learners; Our OVFM algorithm strived to fill the gap.

VII. CONCLUSIONS

In this paper, we explored a novel problem of online learning
in variable feature space with mixed data. The challenge of this
problem lies in the establishing of feature-wise relationship
while the multivariate joint distribution of mixed data (e.g.,
continuous vs discrete) is difficult to be modeled. We counter
this challenge by proposing the OVFM approach that exploits
Gaussian copula to model the mixed data with a latent space
consisting of normal variables. A learner trained on this latent
space enjoys 1) a complete feature information provided by the
missing feature reconstruction and 2) a fast convergence rate
since optimizing over the continuous latent variables renders
gradients in a fine-level of granularity. A theoretical study
demonstrated the performance advantages of our approach, and
extensive empirical results further substantiated that.
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