
SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 1

Learning with Interpretable Structure
from Gated RNN

Bo-Jian Hou, and Zhi-Hua Zhou, Fellow, IEEE

Abstract—The interpretability of deep learning models has
raised extended attention these years. It will be beneficial if we
can learn an interpretable structure from deep learning models.
In this paper, we focus on Recurrent Neural Networks (RNNs)
especially gated RNNs whose inner mechanism is still not clearly
understood. We find that Finite State Automaton (FSA) that
processes sequential data has more interpretable inner mecha-
nism according to the definition of interpretability and can be
learned from RNNs as the interpretable structure. We propose
two methods to learn FSA from RNN based on two different
clustering methods. With the learned FSA and via experiments
on artificial and real datasets, we find that FSA is more trustable
than the RNN from which it learned, which gives FSA a chance
to substitute RNNs in applications involving humans’ lives or
dangerous facilities. Besides, we analyze how the number of gates
affects the performance of RNN. Our result suggests that gate
in RNN is important but the less the better, which could be
a guidance to design other RNNs. Finally, we observe that the
FSA learned from RNN gives semantic aggregated states and its
transition graph shows us a very interesting vision of how RNNs
intrinsically handle text classification tasks.

Index Terms—machine learning, structured output, recurrent
neural network, gated unit, finite state automata, interpretability.

I. INTRODUCTION

In the last several years, great advances have been produced
in Recurrent Neural Networks (RNNs), and especially those
with gates (gated RNNs, such as MGU with one gate [1],
GRU with two gates [2] and LSTM with three gates [3]) have
been successfully applied to various tasks, such as speech
recognition [4], image caption [5], sentiment analysis [6], etc.
However, nowadays, as the inner mechanisms of learning algo-
rithms become more and more complex, their interpretability is
also becoming more and more important [7], [8], [9], [10]. For
example, Freitas (2013) [11] stressed that the comprehensibility
(interpretability) of a model to the user is important. Concretely,
in applications involving human being’s lives or dangerous
facilities such as nuclear power plant, reliable models are
required which should not only give high accuracy but also have
explanation why they made the decision. In learnware [12],
Zhou also stressed this point where people usually want to
know what have been learned by models, particularly in real
tasks where decision reliability is crucial and rigorous judgment
by human beings are critical.

It is worthy to note that there are no unified definitions
on the interpretability in machine learning. We are satisfied
with the definitions provided by Kim et al. (2016) [13] that

All authors are with the National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, Nanjing 210023, China. E-mail:
{houbj,zhouzh}@lamda.nju.edu.cn.

interpretability is the degree to which a human can consistently
predict the model’s result. Another definition we appreciate
is that interpretability is the degree to which a human can
understand the cause of a decision [14]. Lipton (2016) [7]
also discussed a specific form of interpretability known as
human-simulability where a human-simulatable model is one in
which a human user can take in input data with the parameters
of the model and in reasonable time steps through every
calculation required to produce a prediction or briefly the one
can be simulated by human beings. These three perspectives of
interpretability are actually consistent with each other. That is,
if a human can simulate what the model did or can consistently
predict the model’s result, the human can understand the cause
of the model’s decision and trust it.

The inner mechanism of gated RNNs is complex due to
three factors. One is their recurrent structure inherited from
classical RNN [15]. Despite that the recurrent structure has
shown to be the key in handling sequential data, using the
same unit recurrently for different inputs will make human
beings confused about the inner process of classification.
Another complexity of gated RNNs comes from the gates
used on the unit. Although gates can bring the benefits of
remembering long memory, the function of gates has not been
fully understood; especially how many gates are inherently
required for a gated RNN model. Gates also increase the
amount of parameters intensively. Thirdly, the inner process of
gated RNN is in the form of non-linear numerical calculation,
while non-linear operations and numerical vectors could not
be directly associated to a concrete meaning for people to
understand. Gated RNNs are more like black boxes compared
to many other machine learning models, such as SVMs [16]
or decision trees [17], and there is still no clear understanding
of the inner working mechanisms of recurrent neural networks.
In a word, besides successful applications, we also require
understanding of the inner mechanisms of gated RNNs.

We realize that besides RNNs, there is another tool capable
of processing sequential data, i.e. Finite State Automaton
(FSA) [18]. FSA is composed of finite states and transitions
between states. Its state will transit from one to another in
response to external sequential inputs. The transition process
of FSA is similar to that of RNN when both models accept
items from some sequence one by one, and transit between
states accordingly. The inner mechanism of FSA is easier to
be simulated by human beings since a human can take in input
data together with the transition function or the illustration
of FSA and in reasonable time steps through every transition
required to produce a prediction. This characteristic exactly
conforms to the definition of interpretability aforementioned.
Thus, FSA is an interpretable model. It would be interesting if

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 2

we can learn this interpretable structure from gated RNNs. In
this way, we may have a chance to use the interpretability of
FSA to probe into gated RNNs and find some interesting or
even insightful phenomena to help us interpret or understand
gated RNNs to some degree. Besides, with this interpreting
or understanding, we may have a rule or guidance to design
other RNNs. The idea of learning a simple and interpretable
structure is inspired by an early work NeC4.5 [19] which learns
an understandable decision tree by observing the behavior of
the ensemble of several neural networks instead of using the
true labels directly. This operation is also adopted later in
knowledge distillation [20] which is an effective approach and
improves the understandability of deep neural networks.

As for how to learn the interpretable structure, i.e., FSA,
we are inspired by early studies about rule extraction from
neural networks [21], in particular, pioneering works about rule
extraction from RNNs [22], [23]. They found that hidden states
of classical non-gated RNNs tend to form clusters, with which
an FSA can be extracted to represent the rules or grammars
learned by the corresponding non-gated RNNs. We want to
follow this idea to learn FSAs from gated RNNs and to use
this interpretable structure to probe into RNNs. We cannot
directly extend [22], [23] to gated RNNs since there are several
differences between these two works and ours. First, we do
not know whether the tendency to form clusters will also hold
for gated RNNs. Besides, they mainly focus on rule extraction
or how well the grammar is extracted by FSA while we focus
on interpretability. Furthermore, the clustering method they
used are based on quantization which may cause the number
of clusters grows exponentially as the number of hidden units
increases. Thus, it is not possible to directly extend [22],
[23] to gated RNNs. Some recent works [24], [25] use k-
means [26] to cluster the hidden states of RNNs, but they still
focus on the quality of grammar that FSA learned. Although
we use more advanced clustering methods, note that clustering
method is not the key problem here since various effective
clustering methods have been proposed without the exponential
computing problem [27]. The principles to choose clustering
method are the simplicity and efficiency. We believe other
clustering methods can also provide similar results.

Learning from multiple data resources [28], [29], or training
several basic models and then combining them [30] usually
produce better results. Thus, besides learning only one FSA
from RNNs, we also generate multiple FSAs to do ensem-
ble [30], where the diversity of individuals is crucial for the
improvement of performance [31], [32]. Furthermore, single
structure may contain limited semantic information, whereas
multiple structures might make the semantic information more
plentiful and better to understand.

In this paper, we probe into RNNs through learning FSA
from them. We first verify that besides RNN without gates,
gated RNNs’ hidden states also have the natural tendency
to form clusters. Then we propose two methods. One is
based on the stable and high-efficient clustering methods k-
means++ [33]. The other makes use of the observations that
hidden states close in the same sequence also tend to be near
in geometrical spaces, named as k-means-x. We then learn FSA
by designing its five necessary elements, i.e., alphabet, a set of

states, start state, a set of accepting state and state transitions.
We apply our methods on artificial data and real-world data.
We find that FSA is more trustable than the RNN from which
it learned, which gives FSA a chance to substitute RNNs in
applications involving humans’ lives or dangerous facilities,
etc. Besides, we analyze how the number of gates affects the
performance of RNN. Our result suggests that gate in RNN is
important but the less the better, which could be a guidance
to design other RNNs. Additionally, we observe that the FSA
learned from RNN gives semantic aggregated states and its
transition graph shows us a very interesting vision of how
RNNs intrinsically handle text classification tasks. We also
explore the multiple structures and find that multiple FSAs
can improve performance and make the semantic information
more plentiful. Overall, our contributions are mainly fourfold:

1) We propose two effective methods to learn the inter-
pretable structure, i.e., FSA from gated RNNs. The
state transitions in RNNs can be well visualized in a
simplified FSA graph. Through this graph, people can
easily simulate the running process of FSA so as to
validate the interpretability of FSA. We also show that
FSA is consistent with its RNN from which it learned.
In this way, FSA has a chance to substitute its RNN in
applications that need trust.

2) By studying the learned FSA from four main versions of
RNNs with different number of gates from zero to three
(i.e., SRN, MGU, GRU and LSTM), we find that RNNs
with a single gate (i.e., MGU) enjoys a more compact
hidden state representation (could be clustered into fewer
clusters for FSA state definition) than RNNs with no
gate or more than one gates. This phenomenon suggests
us that gate in RNN is necessary, but RNN with simple
gate structure such as MGU is more desirable and this
rule can be our guidance to design other RNN models.

3) On real-world sentiment analysis data, the FSA learned
from RNN gives semantic aggregated states and its
transition graph shows us a very interesting vision of
how RNNs intrinsically handle text classification tasks.
Concretely speaking, we find that the words leading the
same transitions tend to form word class and possess the
same sentiment. The word class leading transitions to
accepting state contains mainly positive words while the
word class leading transitions to rejecting state contains
mainly negative words.

4) We learn many FSAs instead of one and leverage
ensemble technique to combine these FSAs to enhance all
the results we present, which shows multiple structures
combined by ensemble have an edge over single structure.

In the following, we are going to introduce background. Then
we state our detailed algorithms, followed by experiments with
sufficient discussions. Finally, we conclude our work.

II. BACKGROUND

In this section, we introduce one non-gated RNN and three
gated RNNs, which will be studied in our paper, followed by
introduction on related works.

First, we introduce the classical non-gated RNN. It was
proposed in early 90s [15] with simple structure which does

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 3

not possess any gate and is only applied to small scale data.
Therefore, we call it Simple RNN (SRN). In general, SRN
takes each element of a sequence as an input and combines it
with the hidden state from the last time to calculate the current
hidden state iteratively. Concretely, at time t, we input the t-th
element of a sequence, saying xt into the hidden unit. Then the
hidden unit will give the output ht based on the current input
xt and the previous hidden state ht−1 in the following way:
ht = f(ht−1, xt). f is usually defined as a linear transformation
plus a nonlinear activation, e.g., ht = tanh(W [ht−1, xt] + b)
where the matrix W consists of parameters related to ht−1 and
xt and b is a bias term. The task of SRN is to learn W and b.

However, the data we are facing are growing bigger and
bigger, thus we need deeper model [34], [35] to tackle this
problem. Yet in this situation, SRN will suffer from the
vanishing or exploding gradient issue, which makes learning
SRN using gradient descent very difficult [3], [36]. Fortunately,
gated RNNs are proposed to solve the gradient issue by
introducing various gates to hidden unit to control how
information flows in RNN. The two prevailing gated RNNs are
Long Short Term Memory (LSTM) [37] and Gated Recurrent
Unit (GRU) [2]. LSTM has three gates including an input
gate controlling adding of new information, a forget gate
determining remembering of old information and an output
gate deciding outputting of current information. GRU has two
gates, an update gate and a reset gate which controls forgetting
of old information and adding of new information, respectively,
similar to the forget and input gate in LSTM.

The previous models add several gates to one hidden unit,
producing many additional parameters to tune and compute,
thus may not be efficient enough. To tackle this problem, Zhou
et al. (2016) [1] produced Minimal Gated Unit (MGU), which
only has a forget gate and has comparable performance with
LSTM and GRU. Thus, MGU’s structure is simpler, parameters
are fewer and training and tuning are faster than the previous
mentioned gated RNNs.

The mathematical formalizations of the three gated RNN
models including MGU, GRU and LSTM mentioned above
are summarized in Table I, in which

σ(x) =
1

1 + exp(−x)

is the logistic sigmoid function (applied to every component of
the vector input) and � is the component-wise product between
two vectors. All gates in Table I are marked with text “(gate)”,
from which we can easily see that MGU has one gate, GRU
has two gates and LSTM has three gates.

Recently, two representative efforts on understanding RNNs
have been made. Karpathy et al. (2015) [8] focus on visualizing
the input features, using heat map to show activations in text
input which reveals that hidden state captures the structure
of input text, such as length of lines and quotes. Another
work [2] cares about the relationship between representations,
using t-SNE [38] to visualize the phrase representations
learned by an RNN encoder-decoder model. Yet they do
not consider the relationship between hidden neurons, thus
the inner mechanisms cannot be fully explained. Some other
understanding works concern another group of DNN model,

Table I: Summary of three gated RNNs (MGU, GRU and LSTM).
The bold letters are vectors. σ is the logistic sigmoid function, and
� is the component-wise product between two vectors.

MGU (minimal gated unit)
(gate) ft = σ(Wf [ht−1, xt] + bf)

h̃t = tanh(Wh[ft � ht−1, xt] + bh)

ht = (1− ft)� ht−1 + ft · h̃t.

GRU (gated recurrent unit)
(gate) zt = σ(Wz[ht−1, xt] + bz)

(gate) rt = σ(Wr[ht−1, xt] + br)

h̃t = tanh(Wh[rt · ht−1, xt] + bh)

ht = (1− zt)� ht−1 + zt · h̃t.

LSTM (long short-term memory)
(gate) ft = σ(Wf [ht−1, xt] + bf)

(gate) it = σ(Wi[ht−1, xt] + bi)

(gate) ot = σ(Wo[ht−1, xt] + bo)

c̃t = tanh(Wc[ht−1, xt] + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct).

i.e., Convolutional Neural Networks (CNNs) [34] in aspects
of visualizing [9], [39], [40], [41] and relationship between
representations or neurons [42], [43]. However, due to the
sequential property of RNNs, these works on CNNs cannot be
used for RNN models.

Besides, some structured models that provide interpretability
is focusing on “model interpretability” rather than “human in-
terpretability” that we mentioned in Introduction. For example,
SISTA-RNN [44] is based on an explicit probabilistic model
such that its weights are interpretable. OFMHS [45] combines
factorization machine and hierarchical sparsity together so as
to explore the hierarchical structure behind the input variables
to compensate the loss of interpretability. However, a human
still cannot simulate the running process of them, which does
not conform to the definition of interpretability we mentioned
in Introduction. Thus we need to give some new insights on
interpreting the inner mechanisms of gated RNNs, making
the model understandable for human beings. In this paper, we
will learn the interpretable structure, i.e., FSA to probe into
the gated RNNs and attempt to make some contributions to
interpretability.

III. OUR APPROACH

In this section, we first introduce the intuition and framework,
followed by the details of the proposed method including
clustering hidden states and learning FSA.

A. Intuition and Framework

From an intuitive point of view, we consider the following
case. First we train an RNN model R on training data. Then
two test sequences a and b are input to R separately. It is
reasonable to observe that if the two subsequences input to R

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 4

40 20 0 20 40
40

20

0

20

40

(a) MGU

40 30 20 10 0 10 20 30 40

40

20

0

20

40

(b) SRN

40 30 20 10 0 10 20 3030
20
10

0
10
20
30
40

(c) GRU

40 20 0 20 40

40

20

0

20

(d) LSTM

Figure 1: The hidden state points reduced to two dimensions by t-SNE are plotted. We can see that the hidden state points tend to form
cluster for MGU, SRN, GRU and LSTM.

Step 1: Train RNN model Step 2: Cluster hidden states Step 3: Output structured FSA

A A A A

𝐱𝟎 𝐱𝟏 𝐱𝟐 𝐱𝐭

𝐡𝐭

…

𝐡𝟐𝐡𝟏𝐡𝟎

Figure 2: The illustration of the framework of the proposed algorithm. The yellow circles represent the hidden states denoted as ht where
t is time step. “A” is the recurrent unit which receives input xt and ht−1 and outputs ht. The double circle in the structured FSA is the
accepting state. Overall, the framework consists of three mains steps, namely, training an RNN model, clustering the RNN’s hidden states and
outputting the final structured FSA.

before time t1 of a and time t2 of b are analogous, the hidden
states at time step t1 of a and t2 of b will also resemble each
other. We regard a hidden state as a vector or a point. Thus
when several sequences are input to RNNs, large amount of
hidden state points will accumulate, and similar hidden states is
able to form clusters. To validate that, we show the distribution
of hidden state points when testing from MGU, SRU, GRU and
LSTM respectively in Figure 1. We set the original dimension
of hidden states by 10. Then we use t-Distributed Stochastic
Neighbor Embedding (t-SNE) [38] to reduce the dimension of
all 400 hidden state points from 10 to 2 so that we can plot
them on the plane. We already know the fact that the hidden
states of SRN tend to form clusters [22], [23]. As can be seen
from Figure 1, the clustering results of MGU, GRU and LSTM
are similar with that of SRN. Thus, we can infer that the hidden
states of MGU, GRU and LSTM also have the property of
clustering. Besides, we have 400 points for each RNN models,
but we can clearly observe that in Figure 1 (a), 1 (c) and 1
(d), there are only about 11, 9, 9 clusters, respectively, which
shows their clustering property. We assume different clusters
will represent different states. And transitions between states
arise when one item of input sequence is read in. Hence the
network behaves like a state automaton. We assume the states
are finite, then we can learn a Finite State Automaton (FSA)
from a trained RNN model.

So the overall framework is shown in Figure 2. We firstly
train RNNs on training data and then do clustering on all
hidden states H corresponding to validation data V and finally
learn an FSA with respect to V . In the first step of training

RNNs, we exploit the same strategy as [1] and omit the details
here. In the following, we elaborate hidden state clustering and
FSA learning steps.

B. Hidden States Clustering

The first clustering method we consider exploiting is k-
means [26]. K-means is to minimize the average squared
Euclidean distance of points from their cluster centers, which
is efficient, effective and widely used. To obtain a robust result,
we use a variant of k-means named as k-means++ [33] by
using more robust seeding method to select cluster centers.

Nevertheless, directly using Euclidean distance may not be
the best choice. It is reasonable to assume that the hidden
state points in the same sequence are more similar, and the
hidden state points that are close in time are also near in
space. Thus, to consider this characteristic, we concatenate the
original hidden state points with extra features that reflect the
time closeness. We present an illustration as follows:

Feature vector of jth element in the ith sequence :
hidden state︷ ︸︸ ︷

h1
j , h

2
j , . . . , h

d
j ,

extra position feature︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

i−1

, j, 0, . . . , 0︸ ︷︷ ︸
n−i

,

where hdj means the d-th dimension of hidden state point hj .
The dimension n of the extra feature is the number of sequences
in V . Note that each element of a sequence corresponds to
a hidden state. For the j-th element in the i-th sequence, the
content in the i-th position of the extra feature is j. We call the

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 5

extra feature “extra position feature”. After altering the space,
we still use k-means++ to do clustering on the new space. We
call this cluster method k-means-x.

C. Learning FSA

FSA M is a 5-tuple M = 〈Σ, Q, S, F, δ〉 where Σ is
alphabet, meaning the set of the elements appearing in the
input sequences, Q is a set of states, S ∈ Q is the start state,
F ⊆ Q is a set of accepting states and δ : Q×Σ→ Q defines
state transitions in M . In order to learn an FSA, we will specify
the details of how to design such five elements below.

In our case, we want to learn FSAs (Finite State Automata)
from gated RNNs. The alphabet Σ is easy to obtain from data.
For example, if the data D are sentences consisting of words,
then Σ is equal to all words in all sentences. So we have

Σ = Vocabulary(D), (1)

where Vocabulary(D) means the vocabulary of D.
Every time we input an element from some sequence into

RNN, we can get the current hidden state ht given the previous
hidden state ht−1. This process is similar to that we input a
symbol s from alphabet Σ, and according to the current state
and state transitions function δ : Q×Σ→ Q, we would know
which state should be transited to. Thus, we can regard a cluster
consisting of several similar hidden state points as a state in
FSA. Then, the set of states Q are

Q = {C | h ∈ C} ∪ {S}, (2)

where C is the cluster of a number of hidden states points h.
We define the start state S by an empty state without any

hidden state point because when we input a word into RNN, no
previous hidden states are given. Thus the start state S is just
a starting symbol. The accepting states F can be determined
by the cluster center. Note that each state in FSA is a cluster
of hidden state points in RNN. We use the RNN’s classifier
to classify the cluster center of each state. If the classification
result is positive, then the corresponding state is an accepting
state, namely,

F = {C | R(cluster center of C) = 1} (3)

The fifth element δ is the most difficult one to obtain among
the five elements. We use transition matrix T ∈ [|Q|]|Q|×|Σ|
to represent the state transitions δ : Q × Σ → Q where |Q|
means the number of elements in Q, [|Q|] means the set of
integers ranging from 1 to |Q| and |Σ| means the number of
symbols in Σ. In T , each row represents one state (the first
row represents the start state S, its serial number in Q is |Q|),
each column represents a symbol s in alphabet. T (i, j) means
state i will transit to state T (i, j) when inputting a symbol sj
whose corresponding hidden state point belongs to the j-th
state. To get a transition matrix T , we first need to calculate a
matrix Ns for each symbol s in alphabet (e.g. 0 or 1 in binary
alphabet), where the (i, k)-th entry represents the frequency of
jumping from state i to state k given s in all sequences, using
the following steps:

1) indexing every cluster or state, associating each hidden
state point to a state in FSA;

Algorithm 1 LISOR

Input: The number of clusters k;
Output: An FSA.

1: Train an RNN model R and test on validation data V ;
2: Record the hidden state point at every time step of every

sequence in V ;
3: Do clustering on the recorded hidden state points H;
4: Obtain alphabet Σ according to (1);
5: Obtain set of states according to (2);
6: Obtain accepting states according to (3);
7: Calculate a matrix Ns for each symbol s in alphabet (e.g.

0 or 1 in binary alphabet);
8: Generate transition matrix T according to (4).

2) iterating through all hidden state points, and increasing
Ns(i, k) by one when s incurs a transition from state i
to state k.

As a consequence, Ns(i, k) represents the transition times
from state i to k when inputting s. In this case, when inputting
s, state i may transit to several states. We intend to obtain
a deterministic FSA for clear illustrating, so we only keep
the biggest value which means abandoning the less frequent
transitions in each row of Ns. Then the transition matrix T
can be quickly calculated as follows:

T (i, j) = arg max
k

Nsj (i, k) (4)

We can draw an illustration of FSA according to T and use
T to do classification. When doing classification, the state
will keep jumping from one state to another in response to
sequentially input symbols, until the end of the sequence. If
the final state is an accepting state, the sequence is predicted
to be positive by FSA.

The whole process of learning FSA from RNN is presented
in Algorithm 1. We call our method LISOR (Learning with
Interpretable Structure frOm gated Rnn) and present two
concrete algorithms according to different clustering methods.
The one based on k-means++ is named as “LISOR-k” while
the other one based on k-means-x is called “LISOR-x”. By
utilizing the tendency to form clustering of hidden state points,
both LISOR-k and LISOR-x can learn a well generalized FSA
from RNN models.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we conduct experiments on both artificial and
real tasks. With experimental results and sufficient discussions,
we show how we interpret RNN models via FSAs mainly from
the perspective of human simulating, gate effect, semantic
analysis and the advantage of multiple structures.

A. Artificial Tasks

In this section, we explore two artificial tasks.
1) Settings: The first artificial task is to identify sequence

0110 in a group of length-4 sequences which only contain 0
and 1 (task “0110”). If it is 0110, it will be positive. This is
a simple task containing 16 distinct cases. We include 1000

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 6

Table II: The number of clusters (nc) when the accuracy of FSA learned from four RNNs first achieves 1.0 on task “0110” by LISOR-k and
LISOR-x. Note that the smaller the value is the better for higher efficiency and better interpretability. RNN models trained from different
trials are with different initializations on parameters. We can see that on average FSA learned from MGU always possesses the smallest
number of clusters when achieving the accuracy 1.0. The number of clusters is 65 means that the FSA’s accuracy cannot meet 1.0 when nc is
up to 64 since we set nc varying from 2 to 64. The smallest number of clusters in each trial and on average are bold.

LISOR-k LISOR-x
RNN Type MGU SRN GRU LSTM RNN Type MGU SRN GRU LSTM

Trial 1 5 13 7 13 Trial 1 5 13 8 15
Trial 2 8 9 25 9 Trial 2 8 9 65 10
Trial 3 6 6 8 12 Trial 3 6 6 8 12
Trial 4 5 5 8 17 Trial 4 5 5 8 65
Trial 5 6 22 9 22 Trial 5 6 20 9 24

Average 6 11 11.2 14.6 Average 6 10.6 19.6 25.2

Table III: The number of clusters (nc) when the accuracy of FSA learned from four RNNs first achieves 0.7 on task “000” by LISOR-k and
LISOR-x. Note that the smaller the value is the better for higher efficiency and better interpretability. RNN models trained from different
trials are with different initializations on parameters. We can see that on average FSA learned from MGU always possesses the smallest
number of clusters when achieving accuracy 0.7. The number of clusters is 201 means that the FSA’s accuracy cannot meet 0.7 when nc is
up to 200 since we set nc varying from 2 to 200. The smallest number of clusters in each trial and on average are bold.

LISOR-k LISOR-x
RNN Type MGU SRN GRU LSTM RNN Type MGU SRN GRU LSTM

Trial 1 38 84 201 26 Trial 1 31 52 156 25
Trial 2 6 28 109 72 Trial 2 6 27 137 60
Trial 3 9 28 201 20 Trial 3 9 18 201 26
Trial 4 8 41 85 19 Trial 4 8 39 91 22
Trial 5 7 180 201 22 Trial 5 7 145 201 39

Average 13.6 72.2 159.4 31.8 Average 12.2 56.2 157.2 34.4

instances in the training sets, with duplicated instances to
improve accuracy. We use validation set containing all possible
length 4 zero-one sequences without duplication to learn FSAs
and randomly generate 100 instances to do testing.

The second task is to determine whether a sequence contains
three consecutive zeros (task “000”). If it contains consecutive
zeros, it will be negative. There is no limitation on the length
of sequences, thus the task has infinite instance space and is
more difficult than task “0110”. We randomly generate 3000
zero-one training instances whose lengths are also randomly
decided. For simplicity, we set the length to be from 5 to 20.
We also generate 500 validation and 500 testing instances.

For both tasks we mainly study the representative RNNs
including MGU, SRN, GRU and LSTM mentioned in Section II.
For all these four RNN models, we set the dimension of
hidden state and the number of hidden layers to be 10 and 3
respectively. We conduct each experiment 5 trials and report
the average results.

2) Discussions on the Number of Clusters: According to
Algorithm 1, in order to learn and visualize an FSA, we need to
set the cluster number k or equally, the number of states in FSA.
Note that more clusters means each cluster contains less hidden
state points. A trivial example is that the number of clusters is
equal to the number of hidden state points, and then the state
transition in FSA resembles the way that hidden state points
transit in RNNs. So the performance of FSA should be close to
that of RNNs when k is large enough. Nevertheless, we hope
the number of states in FSA to be as small as possible to prevent
over-fitting, increase efficiency and reduce complexity so as
to be easily simulated by human beings. Thus, achieving high

accuracy with small number of clusters is a good characteristic
and we are attempting to make the number of clusters as small
as possible with guaranteed classification performance.

In the task “0110”, we set the number of clusters k varying
from 2 to 64 (we accumulate 4× 16 = 64 hidden points since
we only have 16 sequences in validation data and each sequence
contains 4 numbers). Table II gives the number of clusters
required when the accuracy of FSAs learned from the four
RNNs first achieves 1.0 which means perfectly identifying all
0110 sequences. We can see that among all four RNN models,
FSA learned from MGU always achieves the accuracy 1.0
with the smallest number of clusters in each trial. Specifically,
on average, for LISOR-k the FSA learned from MGU firstly
achieves accuracy 1.0 when the number of clusters is 6 followed
by that of SRN at cluster number 11. The third one is the
FSA learned from GRU with 11.2 clusters, and the final one
is that of LSTM with 14.6. For LISOR-x, the corresponding
numbers of clusters are 6, 10.6, 19.6 and 25.2, respectively.
We can see that the cluster method k-means-x does not bring
too many merits on this simple task compared to k-means++.
It reduces the number of clusters of FSA learned from SRN
but increases those of FSAs learned from GRU and LSTM.
This phenomenon can be explained that k-means++ already
performs well enough due to the simplicity of this task, and
thus k-means-x does not have space to improve.

In the task “000”, we set the number of clusters k ranging
from 2 to 200. Actually we have 500× n hidden state points
where n is the average length of all the 500 sequences, but
we do not need that many since similar to the task “0110”,
large number of clusters may not bring much to performance

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 7

S_5

S_0
1

start
1 S_1

0

S_30

S_2

1

1 0

1

0

0

S_4

1

0

1

(a) k = 6 @MGU

S_1

S_2
1

start

S_0

1

S_7

0

S_6
0

S_8

1

1

0

S_4

0

1

0

S_3

0

1

0

0

S_5

1

1

(b) k = 9 @SRN

S_1

S_41

start

S_0

1

S_7

0

0

S_6

1

1

0

S_2 S_80

S_5

0

S_3

0

1
0

1

10

0

1

(c) k = 9 @GRU

S_1

S_5

1 start

S_3

1
S_7

0

S_0

0

1

1 0

S_2 S_80 S_60

0

S_111

S_4 0

0

S_121

S_9

0 1
S_10

0

1

0
1

1
0

(d) k = 13 @LSTM

Figure 3: FSAs learned from four RNNs trained on task “0110”. The number of clusters k is selected when FSA first reaches accuracy 1.0
as k increases. The 0110 route is marked by red color. Note that in (d) there are four isolated nodes from the main part. This is because we
abandon the less frequent transitions when inputting a symbol to learn a deterministic FSA.

2 7 12 17 22
Number of clusters

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ac
cu

ra
cy

Task-0110
FSA-MGU
FSA-SRN
FSA-GRU
FSA-LSTM

(a) Identifying 0110 by LISOR-k

2 7 12 17 22
Number of clusters

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ac
cu

ra
cy

Task-0110
FSA-MGU
FSA-SRN
FSA-GRU
FSA-LSTM

(b) Identifying 0110 by LISOR-x

20 40 60 80 100
Number of clusters

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Ac
cu

ra
cy

Task-000
FSA-MGU
FSA-SRN
FSA-GRU
FSA-LSTM

(c) Identifying 000 by LISOR-k

20 40 60 80 100
Number of clusters

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Ac
cu

ra
cy

Task-000
FSA-MGU
FSA-SRN
FSA-GRU
FSA-LSTM

(d) Identifying 000 by LISOR-x

Figure 4: Impact of the number of clusters on FSA’s accuracy when learning from MGU, SRN, GRU and LSTM. We can see that FSA
learned from MGU can reach a satisfiable accuracy more quickly.

improvement but may make interpretation from FSA more
difficult. This is a more complicated task than task “0110”
and neither the original RNN models nor the learned FSA can
reach accuracy 1.0 just like that of task “0110”. Thus, we focus
on the accuracy over 0.7, i.e., we will increase the number of
clusters until the accuracy of the learned FSA model reaches
an accuracy of 0.7. As can be seen from Table III, on average
for LISOR-k, FSA learned from MGU firstly achieves accuracy
over 0.7 when there are 13.6 clusters. Then FSA learned from
LSTM achieved this goal with 31.8 clusters followed by that
of SRN at cluster number 72.2. The final one is FSA learned
from GRU that achieves 0.7 when the number of clusters is
159.4. For LISOR-x, the corresponding numbers of clusters for
FSA learned from MGU, SRN, GRU and LSTM are 12.2, 56.2,
157.2 and 34.4, respectively. We can see that cluster method
k-means-x plays a role in this task, i.e., lowers the number of
clusters of MGU, SRN and GRU.

3) Graphical Illustration of FSA: In order to visualize the
corresponding FSA for each RNN model, we focus on our first

method LISOR-k and task “0110” as an example. LISOR-x
and task “000” have similar results. We choose the number
of clusters k that most approaches the average number. For
LISOR-k, the average number of k that first achieves accuracy
1.0 for MGU, SRN, GRU and LSTM are 6, 11, 11.2 and 14.6
according to Table II. Thus, we set the number of clusters for
MGU to be 6 from trail 3, SRN to be 9 from trial 2, GRU to
be 9 from trail 5, LSTM to be 13 from trial 1, respectively.

We then illustrate FSAs’ structure to give people a visual
impression of the proposed LISOR’s output in Figure 3, drawn
by Graphviz [46]. Here we use gray circle and double circle to
represent start and accepting states, respectively. We mark paths
of 0110 sequence by red color. As can be seen, for all length-4
zero-one sequences, only 0110 will eventually lead us to an
accepting state by following the transitions in illustrated FSAs,
and other sequences cannot reach the accepting state. We want
to emphasize that by following the flow of FSAs, transitions
between states are caused directly by input word. We need not
do any numerical calculation that is done in RNN models, thus

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 8

2 7 12 17 22
Number of clusters

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ac
cu

ra
cy

0110-MGU
RNN
ensemble
average

(a) Identifying 0110 by LISOR-k

2 7 12 17 22
Number of clusters

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ac
cu

ra
cy

0110-MGU
RNN
ensemble
average

(b) Identifying 0110 by LISOR-x

20 40 60 80 100
Number of clusters

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

000-MGU

RNN
ensemble
average

(c) Identifying 000 by LISOR-k

20 40 60 80 100
Number of clusters

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

000-MGU

RNN
ensemble
average

(d) Identifying 000 by LISOR-x

Figure 5: Comparisons between the average accuracy of the 5 trials and the accuracy of the ensemble of MGU with the increasing of the
number of clusters. The black dot line represents the accuracy of the corresponding RNN.

2 7 12 17 22
Number of clusters

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ac
cu

ra
cy

0110-MGU
RNN
FSA-vs-RNN
FSA-vs-GRD

(a) Identifying 0110 by LISOR-k

2 7 12 17 22
Number of clusters

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Ac
cu

ra
cy

0110-MGU
RNN
FSA-vs-RNN
FSA-vs-GRD

(b) Identifying 0110 by LISOR-x

20 40 60 80 100
Number of clusters

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

000-MGU

RNN
FSA-vs-RNN
FSA-vs-GRD

(c) Identifying 000 by LISOR-k

20 40 60 80 100
Number of clusters

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

000-MGU

RNN
FSA-vs-RNN
FSA-vs-GRD

(d) Identifying 000 by LISOR-x

Figure 6: Comparisons between the average accuracy of the 5 trials versus GRD (abbr. groundtruth) and the average accuracy of the 5 trials
versus the output of MGU with the increasing of the number of clusters. The blue and red lines in (a-b) overlap totally because the output of
MGU is the same as GRD in task “0110” due to its simplicity. The black dot line represents the accuracy of the corresponding RNN.

making the whole process easier to be simulated by human
beings. In this way, the learned FSAs are interpretable since
they conform to the definition of interpretability mentioned in
the first paragraph of Introduction.

4) Interpretation about Gate Effect: We have a first im-
pression in section IV-A2 that MGU can achieve guaranteed
accuracy with smaller number of clusters. In order to find out
the effect of gates, we give a more detailed result, i.e., how
the accuracy of the learned FSA changes when the number of
clusters is increasing.

For task “0110”, the average accuracy tendencies of five
trials are shown in Figure 4 (a) and 4 (b), which correspond
to algorithm LISOR-k and LISOR-x, respectively. Here we
limit the number of clusters to be less than 24, since when it
is larger than 24, the performance changes slightly. In Figure 4
(a) and 4 (b), all FSA models can reach high performance with
small number of clusters since the task is not complex. When
the number of clusters increases, FSA’s performance may be
unstable due to the loss of information when we abandon less
frequent transitions. We can see that the FSA learned from
MGU always firstly achieves high accuracy and holds the lead.

For task “000”, the average accuracy tendencies of five trials
until the number of clusters is 100 are shown in Figure 4 (c)
and 4 (d). As can be seen from Figure 4 (c) and 4 (d), all four
FSAs’ accuracies increase with number of clusters increasing.
MGU firstly achieves high accuracy and holds the lead.

In summary, we observe that the FSA learned from MGU
reaches its best performance earlier than other RNN models
when the number of clusters increases. Therefore, MGU is
the most efficient when its learned FSA possesses more
clear illustration and easier interpretability. Inspired by this
phenomenon together with the fact that MGU contains less

gates on the unit than GRU and LSTM, and also the fact that
SRN contains no gates, we tend to treat the gate as a regularizer
controlling the complexity of the learned FSAs, as well as
the complexity of space of hidden state points, while no gate
at all will lead to under-fitting. This conclusion motivates us
to design other RNN models in the future, which necessarily
contain gates, but contain only minimal number of gates.

5) Ensemble Results of Multiple FSAs: Generally, ensemble
of multiple classifiers will improve the classification perfor-
mance [30]. In this section, we will show the ensemble accuracy
results with the increasing of number of clusters of the learned
FSA. We focus on MGU since its learned FSA outperforms
others from the previous experiment results. We train five
MGUs with different initializations of parameters. After we got
the corresponding FSAs, we give the final output by majority
voting, e.g., only when 3 out of 5 FSAs vote for positive, the
output will be positive. The results are shown in Figure 5. We
can see that in both tasks, ensemble of multiple FSAs does
improve classification performance. It shows that the ensemble
of learned multiple structures will lead to better classification
in our tasks. We further observe that on the more complex
“000” task, the improvement is much larger than that on the
easier task “0110”. We conjecture that ensemble of multiple
FSAs is more suitable for complex tasks and will continue to
use this strategy in more complex real tasks. We also provide
the classification results of the original RNNs exhibited by
black dot lines. As can be seen from Figure 5, the performance
of FSA is usually worse than the original RNN. This is because
for better illustrating, we discard some less frequent transitions
to obtain a deterministic FSA in which FSA only transits to a
deterministic state when receiving an input. This operation will
lose some information and thus makes FSA perform worse

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 9

than the original RNNs. Nevertheless, what we care about is
the consistency between RNN and its learned FSA. Figure 6
and Table V have validated this point. In this way, FSA has
a chance to substitute its RNN in applications that need trust.
This will be discussed in the next subsection. We also provide
the performance of the original RNNs in Figure 6, Table IV and
Table V for complete comparison. In order to avoid duplication,
we will not elaborate this comparison in the following.

6) The Consistency of FSA Compared to RNN: In order
to show that the proposed model really reflects the decision
process of RNN, or in other words FSA has consistent behavior
with its RNN from which it learned, we make the learned
FSA compare to the output of RNNs. The similar issue has
been discussed in Zhou (2004) [21] where the consistency
between neural networks and its extracted rule is called fidelity.
Zhou (2004) put forward the fidelity-accuracy dilemma, which
highlights that if the extracted rules can even be more accurate
than the neural network, then enforcing the fidelity will sacrifice
the accuracy of the extracted rules. However, in our case, we
do not need to worry about this problem because we are facing
more complex tasks instead of merely testing on grammar.
Thus our learned FSA has no chance to be more accurate
than its RNN due to the loss of information caused by the
operation of abandoning the less frequent transitions. Therefore,
higher fidelity will bring higher accuracy and thus FSA has a
chance to substitute its RNN in applications that need trust. The
results are presented in Figure 6, which shows the comparisons
between accuracy versus groundtruth and the accuracy versus
the output of MGU with the increasing of the number of
clusters. As can be seen from Figure 6 (c-d), in task “000”, the
accuracy versus the output of MGU is always better than that
versus groundtruth. The two lines in Figure 6 (a-b) overlap
totally because the output of MGU is the same as GRD in task
“0110” due to its simplicity. These results all show that FSA has
consistent behavior with its RNN from which it learned or in
other words, FSA reflects the decision process of RNN, which
verifies the strong connection between FSA and its RNN from
which it learned. With this fact, it is reasonable to use FSA
to probe into RNN and explore the interesting interpretability
of RNN itself. The similar results of real task are presented
in Table V. As can be seen, the accuracies versus RNN for
all RNNs are better than the accuracies versus groundtruth. To
avoid repetition, we will not confirm this point in the real task.

B. Real Task

In this section, we conduct our experiments on a practical
task about sentiment analysis.

1) Settings: In this task, we will use the IMDB dataset [47]
to do sentiment analysis [47], [48], which is a very common
task in natural language processing. In this dataset, each
instance is the comment for a movie and the task is to classify
the given sentence into positive or negative sentiment.

To train the RNN models, we first use word2vec [49] to map
each English word from film reviews into a 300 dimensions
numerical vector. Then we train four different RNNs (MGU,
SRN, GRU and LSTM) using these vectors as input. All RNNs’
dimension of hidden states and number of hidden layers are

set to be 10 and 3 respectively, and we randomly select 2000
random-length film reviews as training data. After we get the
trained RNNs, we learn FSAs using 200 testing data. Note that
we adopt a transductive setting, i.e. using the test data directly
to learn FSAs to ensure all words in test data’s vocabulary
are fully covered. In order to explore multiple structures and
obtain stable results, for each of MGU, SRN, GRU and LSTM,
we train five different ones according to different initializations
and learn five corresponding FSAs from them.

2) Discussion on the Number of Clusters: Note that this
task is more complex than the artificial tasks, thus we cannot
enumerate over all possible number of clusters (i.e., number
of hidden states in RNNs). We have tried different number of
clusters, that is k, from 2 to 20 and found that the smaller
k is, the better the performance. We understand that if the
number of clusters is large enough, FSA will perform better
and have similar performance with corresponding RNN models.
However, when k is small, our empirical results show that
simple structure may lead to better performance. Thus in this
part, we only exhibit the results when the number of clusters
is 2. In this case, all the FSAs possess the simplest structure
that is easy to simulate and understand as well as be visually
illustrated. With same number of clusters, the FSA with higher
accuracy has more advantage.

3) Graphical Illustration of FSA: This task has much larger
vocabulary size containing thousands of English words, which
means the number of symbols (i.e., words) in Σ is not simply
2 that is adopted in the artificial tasks. Thus in order to show
the graphical illustration of FSA, we shrink the edges with
same direction between two states into one edge and illustrate
the resulted FSA learned from MGU with two clusters in
Figure 7. Other FSAs’ structures are similar and we omit them.
In this way the words on a shrunk edge are naturally grouped
into a class named as “word class”. Besides, we find that the
structures of the five trials are the same but with different
accepting state. As can be seen from Figure 7, the accepting
state of trial 1 and trial 5 are State 1 (S 1) while those of trail
2, 3 and 4 are State 0 (S 0).

4) Accuracy Result: We show the average results of the five
FSAs’ accuracy in Table IV for each RNN. We can see that, for
both LISOR-k and LISOR-x, FSAs learned from MGU have the
highest accuracy compared to other three RNNs and LISOR-x
performs better than LISOR-k, which shows the effectiveness
of k-means-x that utilizes the extra position feature. In order to
explore the multiple structures, we adopt the same strategy as
artificial tasks, i.e., combining the results of the five FSAs by
ensemble using majority voting. The ensemble classification
results of FSAs learned from MGU, SRN, GRU and LSTM
are also shown in Table IV. As can be seen, for LISOR-k,
the results of ensemble method are almost better than the
case without ensemble except GRU and FSA learned from
MGU exhibits competitive performance. For LISOR-x, the
performances of ensemble are all better than the cases without
ensemble and the FSA learned from MGU outperforms other
RNNs’ FSAs. LISOR-x is better than LISOR-k in MGU, GRU
and LSTM as well. Table V shows the consistency between
RNN and its learned FSA. To avoid repetition, for more details,
please refer to Section IV-A6.

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 10

S_1

word_class_1-1

S_0

word_class_1-0

start

word_class_start-1

word_class_start-0

word_class_0-1

word_class_0-0

(a) k = 2 of MGU from Trail 1 Trail 5

S_0

word_class_0-0

S_1

word_class_0-1

start

word_class_start-0

word_class_start-1

word_class_1-0

word_class_1-1

(b) k = 2 of MGU from Trail 2 Trail 3 Trail 4

Figure 7: FSAs learned from MGU trained on sentiment analysis task. The FSA here is shrunk and the words between the same two states
with same direction are grouped into a word class. For example, the words in “word class 0-1” all incur transitions from State 0 (S 0) to
State 1 (S 1). We train five MGUs with different initializations. (a) is the result of trial 1 and trial 5 where the accepting state is State 1. (b)
is the result of trial 2, 3 and 4 where the accepting state is State 0.

Table IV: Accuracy on sentiment analysis task when the number
of cluster is 2. “Average” means the average accuracy results of the
five structured FSAs. “Ensemble” means using ensemble technique
to combine the five structured FSAs to improve the performance.
LISOR-k and LISOR-x are our methods. In each method and each
strategy, the highest accuracy is bold among the four RNNs.

RNN Type RNN Acc
LISOR-k LISOR-x

Average Ensemble Average Ensemble
MGU 0.818 0.701 0.740 0.740 0.850
SRN 0.647 0.604 0.635 0.592 0.615
GRU 0.811 0.662 0.660 0.699 0.780

LSTM 0.720 0.669 0.750 0.669 0.755

Table V: Accuracy on sentiment analysis task when the number
of cluster is 2. “vGRT” means the average accuracy results of the
five structured FSAs versus groundtruth. “vRNN” means the average
accuracy results of the five structured FSAs versus the output of RNN.
LISOR-k and LISOR-x are our methods. In each method and each
RNN, the higher accuracy is bold between vGRT and vRNN.

RNN Type RNN Acc
LISOR-k LISOR-x

vGRT vRNN vGRT vRNN
MGU 0.818 0.701 0.749 0.740 0.778
SRN 0.647 0.604 0.729 0.592 0.719
GRU 0.811 0.662 0.721 0.699 0.746

LSTM 0.720 0.669 0.751 0.669 0.753

Table VI: The word class (word class 0-1) leading transition from State 0 to State 1 (the accepting state) contains mainly “positive” words.
Here the number in the bracket shows the serial number of the FSA from which this word comes.

Positive

exceptionally(1) riffs(1) Wonderful(1) gratitude(1) diligent(1) spectacular(1) sweetness(1) exceptional(1) Best(1) feats(1)
sexy(1) bravery(1) beautifully(1) immediacy(1) meditative(1) captures(1) incredible(1) virtues(1) excellent(1) shone(1)
honor(1) pleasantly(1) lovingly(1) exhilarating(1) devotion(1) teaming(1) humanity(1) graceful(1) tribute(1) peaking(1)
insightful(1) frenetic(1) romping(1) proudly(1) terrific(1) Haunting(1) sophisticated(1) strives(1) exemplary(1) favorite(1)
professionalism(1) enjoyable(1) alluring(1) entertaining(1) Truly(1) noble(1) bravest(1) exciting(1) Hurray(1) wonderful(1)
Miracle(1)... feelings(5) honest(5) nifty(5) smashes(5) ordered(5) revisit(5) moneyed(5) flamboyance(5) reliable(5)
strongest(5) loving(5) useful(5) fascinated(5) carefree(5) recommend(5) Greatest(5) legendary(5) increasing(5) loyalty(5)
respectable(5) clearer(5) priority(5) Hongsheng(5) notable(5) reminiscent(5) spiriting(5) astonishing(5) charismatic(5)
lived(5) engaging(5) blues(5) pleased(5) subtly(5) versatile(5) favorites(5) remarkably(5) poignant(5) Breaking(5)
heroics(5) promised(5) elite(5) confident(5) underrated(5) justice(5) glowing(5) ... adventure(1,5) victory(1,5) popular(1,5)
adoring(1,5) perfect(1,5) mesmerizing(1,5) fascinating(1,5) extraordinary(1,5) AMAZING(1,5) timeless(1,5) delight(1,5)
GREAT(1,5) nicely(1,5) awesome(1,5) fantastic(1,5) flawless(1,5) beguiling(1,5) famed(1,5)

Negative downbeat(1) wicked(1) jailed(1) corruption(1) eccentric(5) troubled(5) cheats(5) coaxed(5) convicted(5) steals(5) painful(5)
cocky(5) endures(5) annoyingly(5) dissonance(5) disturbing(5) goofiness(1,5)

Table VII: The word class (word class 0-1) leading transition from State 0 to State 1 (the rejecting state) contains mainly “negative” words.
Here the number in the bracket shows the serial number of the FSA from which this word comes.

Positive merry(2) advance(2) beliefs(3) romancing(3) deeper(3) resurrect(3)

Negative

shut(2) dullest(2) unattractive(2) Nothing(2) adulterous(2) stinkers(2) drunken(2) hurt(2) rigid(2) unable(2) confusing(2)
risky(2) mediocre(2) nonexistent(2) idles(2) horrible(2) disobeys(2) bother(2) scoff(2) interminably(2) arrogance(2)
mislead(2) filthy(2) dependent(2) MISSED(2) asleep(2) unfortunate(2) criticized(2) weary(2) corrupt(2) jeopardized(2)
drivel(2) scraps(2) phony(2) prohibited(2) foolish(2) reluctant(2) Ironically(2) fell(2) escape(2) ... whitewash(3) fanciful(3)
flawed(3) No(3) corrupts(3) fools(3) limited(3) missing(3) pretense(3) drugs(3) irrational(3) cheesy(3) crappy(3) cheap(3)
wandering(3) forced(3) warped(3) shoplift(3) concerns(3) intentional(3) Desperately(3) dying(3) clich(3) bad(3) evil(3)
evicted(3) dead(3) minor(3) drunk(3) loser(3) bothered(3) reek(3) tampered(3) inconsistencies(3) ignoring(3) Ward(3)
doom(3) quit(3) goofier(3) antithesis(3) fake(3) helplessness(3) surly(3) demoted(3) fault(3) worst(3) baffling(3) destroy(3)
fails(3) Pity(3) pressure(3) nuisance(3) farce(3) fail(3) worse(3) SPOLIER(3) egomaniacal(3) quandary(3) burning(3)
drinker(3) blame(3) intimidated(3) perfidy(3) boring(3) conservative(3) forgetting(3) hostile(3) ... unattractive(2,3)
goof(2,3) lousy(2,3) stupidest(2,3) mediocrity(2,3) Badly(2,3) mediocre(2,3) waste(2,3) hypocrite(2,3) confused(2,3)
vague(2,3) clumsily(2,3) stupid(2,3)

5) Semantic Interpretation: We find that the FSA learned
from RNN gives semantic aggregated states and its transition
graph shows us a very interesting vision of how RNNs

intrinsically handle text classification tasks. Specifically, we
still focus on MGU since its FSA possesses best performance.
The results are shown in Table VI and Table VII. We consider

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 11

the transition from State 0 to State 1 in all the five learned
FSAs. Table VI shows the results on the 1st and 5th FSA.
According to Figure 7 (a), we realize that this is a transition
leading to the accepting state. We can see that the word class
leading transition from State 0 to State 1 (the accepting state)
contains mainly “positive” words, for example, wonderful,
spectacular, sweetness, etc. The results on the 2nd and 3rd
FSA are shown in Table VII. According to Figure 7 (b), we
know State 1 is a rejecting state. We can see that most of the
activation words of this transition are negative, for example,
dullest, unattractive, confusing, etc. We also make exploration
on the effect of multiple structures. The number in the bracket
in Table VI and Table VII shows the serial number of the FSA
from which this word comes. As can be seen, one FSA will
only cover one part of the positive or negative words, thus
having limited semantic meaning, while multiple FSAs can
make the semantic meaning more plentiful.

V. CONCLUSION

It will be beneficial if we can learn an interpretable structure
from the RNN models since there is still no clear understanding
of the inner mechanism of RNN models. In this paper, realizing
the similarity between RNNs and FSA, as well as the good
interpretability of FSA, we try to learn FSA from RNN, and
analyze RNNs from FSA’s point of view. After verifying that
the hidden states of gated RNNs indeed form clusters, we
propose two methods to learn FSAs from four kinds of RNNs,
based on different clustering strategies. We graphically show
the learned FSA and explicitly give the transition route for
human beings to simulate. We also show how the number
of gates affects the performance of RNNs, and the semantic
meaning behind the numerical calculation in hidden units. We
find that gate is important for RNN but the less the better,
which can guide us to design other RNNs with only one gate
and save us from unnecessary twists and turns. Considering
FSA can consistently imitate the performance of its RNN from
which it learned, we would like to devote to improving the
performance of RNN and FSA. In this way, FSA can have a
chance to substitute its RNN from which it learned to be used
in those applications that need trust, such as the applications
involving human being’s lives or dangerous facilities.

Despite the contributions summarized in the last paragraph,
we want to convey an insight to our community. That is
it is feasible and desirable to find other interpretable tools
that resemble the complex deep learning models to interpret
them. For example, we find that FSA is analogous to RNNs,
and then we employ FSA to probe into RNNs to discover
their interpretable mechanisms. However, this work is still a
preliminary exploration and it has many aspects to improve.
For instance, due to the limitation of FSA’s ability on binary
classification, the most appropriate real task that we can perform
is the sentiment analysis task since it is a binary classification
task. We would like to find or propose other tools that is
with interpretability but can handle complex tasks rather than
binary classification in the future. Another interesting future
issue is to incorporate some approach like the proposed one
into the recently proposed abductive learning [50], a new

paradigm which encompasses machine learning and logical
reasoning, such that the machine learning results become more
comprehensible to enable a more powerful technology when
combining with logical reasoning.

ACKNOWLEDGEMENT

This research was supported by the National Key R&D
Program of China (2018YFB1004300), the National Science
Foundation of China (61751306, 61921006), and the Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization.

REFERENCES

[1] G.-B. Zhou, J. Wu, C.-L. Zhang, and Z.-H. Zhou, “Minimal gated unit
for recurrent neural networks,” International Journal of Automation and
Computing, vol. 13, no. 3, pp. 226–234, 2016.

[2] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in EMNLP,
2014, pp. 1724–1734.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks
for acoustic modeling in speech recognition: The shared views of four
research groups,” IEEE Signal Processing Magazine, vol. 29, pp. 82–97,
2012.

[5] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in CVPR, 2015, pp. 3156–3164.

[6] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in EMNLP, 2015, pp. 1422–
1432.

[7] Z. C. Lipton, “The mythos of model interpretability,” CoRR, vol.
abs/1606.03490, 2016.

[8] A. Karpathy, J. Johnson, and F. Li, “Visualizing and understanding
recurrent networks,” CoRR, vol. abs/1506.02078, 2015.

[9] J. Yosinski, J. Clune, A. M. Nguyen, T. J. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,” CoRR, vol.
abs/1506.06579, 2015.

[10] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez,
“Beyond sparsity: Tree regularization of deep models for interpretability,”
in AAAI, 2018.

[11] A. A. Freitas, “Comprehensible classification models: a position paper,”
SIGKDD Explorations, vol. 15, no. 1, pp. 1–10, 2013.

[12] Z.-H. Zhou, “Learnware: on the future of machine learning,” Frontiers
of Computer Science, vol. 10, no. 4, pp. 589–590, 2016.

[13] B. Kim, O. Koyejo, and R. Khanna, “Examples are not enough, learn to
criticize! criticism for interpretability,” in NIPS, 2016, pp. 2280–2288.

[14] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[15] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.

[16] T. Joachims, “Text categorization with support vector machines: Learning
with many relevant features,” in ECML, 1998, pp. 137–142.

[17] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[18] A. Gill, Introduction to the theory of finite-state machines. McGraw-Hill
New York, 1962.

[19] Z.-H. Zhou and Y. Jiang, “NeC4.5: Neural ensemble based C4.5,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 6, pp.
770–773, 2004.

[20] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015.

[21] Z.-H. Zhou, “Rule extraction: Using neural networks or for neural
networks?” Journal of Computer Science and Technology, vol. 19, no. 2,
pp. 249–253, 2004.

[22] C. W. Omlin and C. L. Giles, “Extraction of rules from discrete-time
recurrent neural networks,” Neural Networks, vol. 9, no. 1, pp. 41–52,
1996.

[23] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning finite state machines
with self-clustering recurrent networks,” Neural Computation, vol. 5,
no. 6, pp. 976–990, 1993.

SUBMITTED TO THE SPECIAL ISSUE ON STRUCTURED MULTI-OUTPUT LEARNING: MODELLING, ALGORITHM, THEORY AND APPLICATIONS 12

[24] Q. Wang, K. Zhang, A. G. O. II, X. Xing, X. Liu, and C. L. Giles, “An
empirical evaluation of rule extraction from recurrent neural networks,”
Neural Computation, vol. 30, no. 9, 2018.

[25] Q. Wang, K. Zhang, I. Ororbia, G. Alexander, X. Xing, X. Liu, and
C. L. Giles, “A comparative study of rule extraction for recurrent neural
networks,” arXiv preprint arXiv:1801.05420, 2018.

[26] J. Hartigan and M. Wong, “Algorithm AS 136: A K-means clustering
algorithm,” Applied Statistics, pp. 100–108, 1979.

[27] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping
Multidimensional Data - Recent Advances in Clustering, 2006, pp. 25–71.

[28] C. Gong, D. Tao, S. J. Maybank, W. Liu, G. Kang, and J. Yang, “Multi-
modal curriculum learning for semi-supervised image classification,”
IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3249–3260,
2016.

[29] C. Gong, “Exploring commonality and individuality for multi-modal
curriculum learning,” in AAAI, 2017, pp. 1926–1933.

[30] Z.-H. Zhou, Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC, 2012.

[31] T. Sun and Z.-H. Zhou, “Structural diversity for decision tree ensemble
learning,” Frontiers of Computer Science, vol. 12, no. 3, pp. 560–570,
2018.

[32] Y. Zhang, W. Cao, Y. Jin, and M. Wu, “An ensemble model based
on weighted support vector regression and its application in annealing
heating process,” Science China Information Sciences, vol. 62, no. 4, p.
49202, 2019.

[33] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful
seeding,” in SODA, 2007, pp. 1027–1035.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1106–1114.

[35] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning. MIT
Press, 2016.

[36] Y. Bengio, P. Y. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[37] F. A. Gers, J. Schmidhuber, and F. A. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[38] L. van der Maaten, “Learning a parametric embedding by preserving
local structure,” in AISTATS, 2009, pp. 384–391.

[39] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Object
detectors emerge in deep scene cnns,” CoRR, vol. abs/1412.6856, 2014.

[40] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in ECCV, 2014, pp. 818–833.

[41] A. W. Harley, “An interactive node-link visualization of convolutional
neural networks,” in ISVC, 2015, pp. 867–877.

[42] P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea, “Visualizing
the hidden activity of artificial neural networks,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp. 101–110, 2017.

[43] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better analysis of
deep convolutional neural networks,” IEEE Transactions on Visualization
and Computer Graphics, vol. 23, no. 1, pp. 91–100, 2017.

[44] S. Wisdom, T. Powers, J. W. Pitton, and L. E. Atlas, “Interpretable
recurrent neural networks using sequential sparse recovery,” CoRR, vol.
abs/1611.07252, 2016.

[45] S. Guo, S. Chen, and Q. Tian, “Ordinal factorization machine with
hierarchical sparsity,” Frontiers of Computer Science, vol. 14, no. 1, pp.
67–83, 2020.

[46] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz and dynagraph - static and dynamic graph drawing tools,” in
Graph Drawing Software, 2004, pp. 127–148.

[47] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in ACL, 2011, pp. 142–
150.

[48] S. Poria, E. Cambria, D. Hazarika, N. Majumder, A. Zadeh, and
L. Morency, “Context-dependent sentiment analysis in user-generated
videos,” in ACL, 2017, pp. 873–883.

[49] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[50] Z.-H. Zhou, “Abductive learning: towards bridging machine learning and
logical reasoning,” Science China Information Sciences, vol. 62, no. 7,
p. 76101, 2019.

Bo-Jian Hou is a PhD student in the Department
of Computer Science & Technology of Nanjing
University. He received the BSc degree from Nanjing
University, China, in 2014. He is currently work-
ing toward the PhD degree in computer science
at Nanjing University. His main research interests
include machine learning and data mining. He won
the National Scholarship in 2017. He also won
the Program A for Outstanding PhD Candidate of
Nanjing University and CCFAI Outstanding Student
Paper Award in 2019.

Zhi-Hua Zhou (S’00-M’01-SM’06-F’13) received
the BSc, MSc and PhD degrees in computer science
from Nanjing University, China, in 1996, 1998
and 2000, respectively, all with the highest honors.
He joined the Department of Computer Science &
Technology at Nanjing University as an Assistant
Professor in 2001, and is currently Professor, Head of
the Department of Computer Science and Technology,
and Dean of the School of Artificial Intelligence;
he is also the Founding Director of the LAMDA
group. His research interests are mainly in artificial

intelligence, machine learning and data mining. He has authored the books
Ensemble Methods: Foundations and Algorithms, Evolutionary Learning:
Advances in Theories and Algorithms, Machine Learning (in Chinese),
and published more than 200 papers in top-tier international journals or
conference proceedings. He has received various awards/honors including
the National Natural Science Award of China, the IEEE Computer Society
Edward J. McCluskey Technical Achievement Award, the ACML Distinguished
Contribution Award, the PAKDD Distinguished Contribution Award, the IEEE
ICDM Outstanding Service Award, the Microsoft Professorship Award, etc. He
also holds 24 patents. He is the Editor-in-Chief of the Frontiers of Computer
Science, Associate Editor-in-Chief of the Science China Information Sciences,
Action or Associate Editor of the Machine Learning, IEEE Transactions on
Pattern Analysis and Machine Intelligence, ACM Transactions on Knowledge
Discovery from Data, etc. He served as Associate Editor-in-Chief for Chinese
Science Bulletin (2008-2014), Associate Editor for IEEE Transactions on
Knowledge and Data Engineering (2008-2012), IEEE Transactions on Neural
Networks and Learning Systems (2014-2017), ACM Transactions on Intelligent
Systems and Technology (2009-2017), Neural Networks (2014-2016), etc. He
founded ACML (Asian Conference on Machine Learning), served as Advisory
Committee member for IJCAI (2015-2016), Steering Committee member for
ICDM, ACML, PAKDD and PRICAI, and Chair of various conferences such
as Program Chair of AAAI 2019, General Chair of ICDM 2016, and Area
Chair of NeurIPS, ICML, AAAI, IJCAI, KDD, etc. He was the Chair of the
IEEE CIS Data Mining Technical Committee (2015-2016), the Chair of the
CCF-AI (2012-2019), and the Chair of the CAAI Machine Learning Technical
Committee (2006-2015). He is a foreign member of the Academy of Europe,
and a Fellow of the ACM, AAAI, AAAS, IEEE, IAPR, IET/IEE, CCF, and
CAAI.

