
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 1

Learning with Feature Evolvable Streams
Bo-Jian Hou, Lijun Zhang, Member, IEEE and Zhi-Hua Zhou, Fellow, IEEE

Abstract—Learning with streaming data has attracted much attention during the past few years. Though most studies consider data
stream with fixed features, in real practice the features may be evolvable. For example, features of data gathered by limited-lifespan
sensors will change when these sensors are substituted by new ones. In this paper, we propose a novel learning paradigm: Feature
Evolvable Streaming Learning where old features would vanish and new features would occur. Rather than relying on only the current
features, we attempt to recover the vanished features and exploit it to improve performance. Specifically, we learn a mapping from the
overlapping period to recover old features and then we learn two models from the recovered features and the current features,
respectively. To benefit from the recovered features, we develop two ensemble methods. In the first method, we combine the predictions
from two models and theoretically show that with the assistance of old features, the performance on new features can be improved and
we provide a tighter bound when the loss function is exponentially concave. In the second approach, we dynamically select the best
single prediction and establish a better performance guarantee when the best model switches. Experiments on both synthetic and real
data validate the effectiveness of our proposal.

Index Terms—Machine learning, Supervised learning, Learning with streaming data, Evolvable features.

F

1 INTRODUCTION

IN many real tasks, data are accumulated over time, and
thus, learning with streaming data has attracted much at-

tention during the past few years. Many effective approaches
have been developed, such as hoeffding tree [1], Bayes
tree [2], evolving granular neural network (eGNN) [3], Core
Vector Machine (CVM) [4], etc. Though these approaches
are effective for certain scenarios, they have a common
assumption, i.e., the data stream comes with a fixed stable
feature space. In other words, the data samples are always
described by the same set of features. Unfortunately, this
assumption does not hold in many streaming tasks. For
example, for ecosystem protection one can deploy many
sensors in a reserve to collect data, where each sensor
corresponds to a feature. Due to its limited-lifespan, after
some periods many sensors will wear out, whereas some
new sensors can be spread. Thus, features corresponding
to the old sensors vanish while features corresponding to
the new sensors appear, and the learning algorithm needs
to work well under such evolving environment. Note that
the ability of adapting to environmental change is one of
the fundamental requirements for learnware [5], where an
important aspect is the ability of handling evolvable features.

A straightforward approach is to rely on the new features
and learn a new model to use. However, this solution suffers
from some deficiencies. First, when new features just emerge,
there are few data samples described by these features, and
thus, the training samples might be insufficient to train a
strong model. Second, the old model of vanished features is
ignored, which is a big waste of our data collection efforts.
To address these limitations, in this paper we propose a
novel learning paradigm: Feature Evolvable Streaming Learning
(FESL). We formulate the problem based on a key observa-
tion: in general, features do not change in an arbitrary way;
instead, there are some overlapping periods in which both

• B.-J. Hou, L Zhang and Z.-H. Zhou are with National Key Laboratory of
Novel Software Technology, Nanjing University, Nanjing, 210023, China.
Email: {houbj, zhanglj, zhouzh}@lamda.nju.edu.cn.

Feature Evolution

D
a

ta
 S

trea
m

in
g

Feature Set

𝑆1 𝑆2 𝑆3 …

data with

feature set 𝑆1

data with feature set 𝑆1 and 𝑆2

data with

feature set 𝑆2

data with feature set 𝑆2 and 𝑆3

𝑇2

𝑇1

𝐵1

𝐵2

Figure 1. Illustration that how data stream comes.

old and new features are available. Back to the ecosystem
protection example, since the lifespan of sensors is known
to us, e.g., how long their battery will run out is a prior
knowledge, we usually spread a set of new sensors before
the old ones wear out. Thus, the data stream arrives in a
way as shown in Figure 1, where in period T1, the original
set of features are valid and at the end of T1, period B1

appears, where the original set of features are still accessible,
but some new features are included; then in T2, the original
set of features vanish, only the new features are valid but
at the end of T2, period B2 appears where newer features
come. This process will repeat again and again. Note that
the T1 and T2 periods are usually long, whereas the B1 and
B2 periods are short because, as in the ecosystem protection
example, the B1 and B2 periods are just used to switch the
sensors and we do not want to waste a lot of lifetime of
sensors for such overlapping periods.

In this paper, we propose to solve the FESL problem by
utilizing the overlapping period to discover the relationship
between the old and new features, and exploiting the
old model even when only the new features are available.
Specifically, we try to learn a mapping from new features to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 2

old features through the samples in the overlapping period.
In this way, we are able to reconstruct old features from
new ones and thus the old model can still be applied. To
benefit from additional features, we develop two ensemble
methods, one is in a combination manner and the other in a
dynamic selection manner. In the first method, we combine
the predictions from two models and theoretically show that
with the assistance of old features, the performance on new
features can be improved and we find that if the loss function
is exponentially concave, the corresponding bound will be
tighter. In the second approach, we dynamically select the
best single prediction and establish a better performance
guarantee when the best model switches at an arbitrary
time. Experiments on synthetic and real datasets validate the
effectiveness of our proposal.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 presents the formulation of
FESL. Our proposed approaches with corresponding analy-
ses are presented in section 4. Section 5 provides the detailed
proofs of our theorems. Section 6 reports experimental results.
Finally, Section 7 concludes our paper.

2 RELATED WORK

Our work is most related to data stream classification task.
Existing techniques for data stream classification can be
divided into two categories, one only considers a single
classifier and the other considers ensemble classifiers.

For the former, several methods have been proposed, for
examples, hoeffding tree that is a decision tree classifier
has been proposed for data streams [1]; Bayes tree [2]
gives a novel index-based classifier; evolving granular
neural network (eGNN) [3] supported by granule-based
learning algorithms is used to classify data streams; Core
Vector Machine (CVM) [4] corresponding with a one-pass
version [6] is inspired by SVM; On-Demand-Stream [7]
proposes a k-nearest-neighbor data stream classifier. For
the latter, various ensemble methods have been proposed
which are as follows: Online Bagging & Boosting [8] is
an online version of the batch Bagging and Boosting al-
gorithm that tackles the problem when data arrive in stream
without the need for storage and reprocessing; Ensemble
Classifiers [9, 10] mines concept-drifting data streams using
weighted ensemble technique; Adapted One-vs-All Decision
Trees (OVA) [11] proposes a new OVA scheme that is adapted
for data stream classification; Meta-knowledge Ensemble [12]
explores shared patterns among all the base classifiers in a
spatial database. For more details, please refer to [13–16].

These traditional streaming data algorithms often assume
that the data samples are described by the same set of
features, while in many real streaming tasks feature often
changes. We want to emphasize that though concept-drift
happens in streaming data where the underlying data dis-
tribution changes over time [17–19], the number of features
in concept-drift never changes which is different from our
problem. Most studies correlated to features changing are
focusing on feature selection and extraction [20, 21] and
to the best of our knowledge, none of them consider the
evolving of feature set during the learning process.

Data stream mining is a hot research direction in data
mining while online learning [22, 23] is a related topic from

machine learning. Yet online learning can also tackle the
streaming data problem since it assumes that the data come
in a streaming way. Online learning has been extensively
studied under different settings, such as learning with
experts [24] in which the forecaster predicts by exploiting the
prediction of experts and online convex optimization [25, 26]
which faces a sequence of convex problems. There are strong
theoretical guarantees for online learning, and it usually uses
regret or the number of mistakes to measure the performance
of the learning procedure. However, most of existing online
learning algorithms are limited to the case that the feature
set is fixed.

Other related topics involving multiple feature sets
include multi-view learning [27, 28], transfer learning [29, 30]
and incremental attribute learning [31]. Although both our
approaches and multi-view learning exploit the relation
between different sets of features, there exists a fundamental
difference: multi-view learning assumes that every sample is
described by multiple feature sets simultaneously, whereas
in FESL only few samples in the feature switching period
have two sets of features, and no matter how many periods
there are, the switching part involves only two sets of
features. Transfer learning usually assumes that data are
in batch mode, and few of them consider the streaming
cases where data arrives sequentially and cannot be stored
completely. One exception is online transfer learning [32] in
which data from both sets of features arrive sequentially.
However, they assume that all the feature spaces must
appear simultaneously during the whole learning process
while such an assumption is not true in FESL. Another
transfer learning work that is in an online manner is called
online heterogeneous transfer (OHT) [33]. The feature spaces
of the source and target domains of OHT are different.
Nevertheless, although they assume the target data of interest
arrive in an online manner, the source data and auxiliary
co-occurrence data are from offline sources while in our
scenario both the data from old and new feature spaces
come in a streaming or online manner and the feature space
continues evolving instead of only two invariant feature
spaces shown in OHT. Furthermore, transfer learning often
assumes that the label spaces of the source domain and
target domain could be different while the label spaces in
our setting are the same. When it comes to incremental
attribute learning [31], old sets of features do not vanish or
do not vanish entirely while in FESL, old ones will vanish
thoroughly when new sets of features come. There were
studies about incremental optimization under non-stationary
environment [34], whereas our concerned setting has not
been touched yet.

The most related work is OPID [35]. It also handles
evolvable streams. Different to our setting where there are
overlapping periods, OPID handles situations where there
are no overlapping periods but there are overlapping features.
Thus, the technical challenges and solutions are different.

3 PRELIMINARIES

We focus on both classification and regression tasks. On
each round of the learning process, the algorithm observes
an instance and gives its prediction. After the prediction
has been made, the true label is revealed and the algorithm

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 3

Feature Evolution

D
a

ta
 S

trea
m

in
g

Feature Space 𝑆1 Feature Space 𝑆2

𝐱1
𝑆1

…

𝐱𝑇1−𝐵
𝑆1

𝐱𝑇1−𝐵+1
𝑆1 𝐱𝑇1−𝐵+1

𝑆2

… …

𝐱𝑇1
𝑆1 𝐱𝑇1

𝑆2

𝐱𝑇1+1
𝑆2

…

𝐱𝑇1+𝑇2
𝑆2

𝑇1

𝐵

𝑇2

Figure 2. Illustration of setting where the feature space may evolve over
time. Here, we only consider the case with two feature spaces. Note that
T1 and T2 are large while B is very small.

suffers a loss which reflects the discrepancy between the
prediction and the groundtruth. We define “feature space” in
our paper by a set of features. That the feature space changes
means both the underlying distribution of the feature set and
the number of features change. Consider the process with
three periods: in the first period large amount of data streams
come from the old feature space; then in the second period
named as overlapping period, few of data come from both
the old and the new feature space; soon afterwards in the
third period, data streams only come from the new feature
space. We call this whole process a cycle. As can be seen from
Figure 1, each cycle merely includes two feature spaces. Thus,
we only need to focus on one cycle and it is easy to extend
to the case with multiple cycles. Besides, we assume that
the old features in one cycle will vanish simultaneously by
considering the example of ecosystem protection where all
the sensors share the same expected lifespan and thus they
will wear out at the same time. We will study the case where
old features do not vanish simultaneously in the future work.

Based on the above discussion, we only consider two
feature spaces denoted by S1 and S2, respectively. Suppose
that in the overlapping period, there are B rounds of
instances both from S1 and S2. As can be seen from Figure 2,
the process can be summarized as follows.
• For t = 1, . . . , T1−B, in each round, the learner observes

a vector xS1
t ∈ Rd1 sampled from S1 where d1 is the

number of features of S1, T1 is the number of total
rounds in S1.

• For t = T1 − B + 1, . . . , T1, in each round, the learner
observes two vectors xS1

t ∈ Rd1 and xS2
t ∈ Rd2 from S1

and S2, respectively where d2 is the number of features
of S2.

• For t = T1 + 1, . . . , T1 + T2, in each round, the learner
observes a vector xS2

t ∈ Rd2 sampled from S2 where T2

is the number of rounds in S2. Note that B is small, so
we can omit the streaming data from S2 on rounds T1 −
B + 1, . . . , T1 since they have minor effect on training
the model in S2.

We use ‖x‖ to denote the `2-norm of a vector x ∈
Rdi , i = 1, 2. The inner product is denoted by 〈·, ·〉. Let
Ω1 ⊆ Rd1 and Ω2 ⊆ Rd2 be two sets of linear models that
we are interested in. We define the projection ΠΩi

(b) =
argmina∈Ωi

‖a − b‖, i = 1, 2. We restrict our prediction
function in i-th feature space and t-th round to be linear
which takes the form 〈wi,t, x

Si
t 〉 where wi,t ∈ Rdi , i = 1, 2.

The loss function `(w>x, y) is convex in its first argument.
For example, in classification task, we have logistic loss
`(w>x, y) = ln(1 + exp(−y(w>x))), hinge loss `(w>x, y) =
max(0, 1−y(w>x)), etc., while in regression task, we usually
use square loss, namely `(w>x, y) = (y −w>x)2.

The most straightforward or baseline algorithm is to
apply online gradient descent [22] on rounds 1, . . . , T1

with streaming data xS1
t , and invoke it again on rounds

T1 + 1, . . . , T1 + T2 with streaming data xS2
t . The models are

updated according to:

wi,t+1 = ΠΩi

(
wi,t − τt∇`(w>i,tx

Si
t , yt)

)
, i = 1, 2, (1)

where τt is a varied step size.

4 OUR PROPOSED APPROACH

In this section, we first introduce the basic idea of the solution
to FESL, then present two different kinds of approaches with
the corresponding analyses.

4.1 Basic Idea with Linear and Nonlinear Mapping
The major limitation of the baseline algorithm mentioned
above is that the model learned on rounds 1, . . . , T1 is
ignored on rounds T1 + 1, . . . , T1 + T2. The reason is that
from rounds t > T1, we cannot observe data from feature
space S1, and thus the model w1,T1 , which operates in S1,
cannot be used directly. To address this challenge, we assume
there exists certain relationship ψ : Rd2 → Rd1 between the
two feature spaces, and try to discover it in the overlapping
period. There are several methods to learn a relationship
between two sets of features including multivariate regres-
sion [36], streaming multi-label learning [37], etc.

We choose to use the popular and effective method —
least squares [38] which can be formulated as follows.

min
ψ:Rd2→Rd1

∑T1

t=T1−B+1

1

2
‖xS1
t − ψ(xS2

t)‖22.

If the overlapping period is very short, it is unrealistic to
learn a complex relationship between the two spaces. Instead,
we can use a linear mapping to approximate ψ. Assume the
coefficient matrix of the linear mapping is M , then during
rounds T1−B+1, . . . , T1, the estimation of M can be learnt
by linear least squares

min
M∈Rd2×d1

∑T1

t=T1−B+1

1

2
‖xS1
t −M>xS2

t ‖22.

The optimal solution M∗ to the above problem is given by

M∗ =

 T1∑
t=T1−B+1

xS2
t xS2

t

>

−1 T1∑
t=T1−B+1

xS2
t xS1

t

>

 .
(2)

Note that we do not need a budget to store instances from the
overlapping period because during the period from T1−B+1

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 4

to T1, M∗ can be calculated in an online way, i.e., we first
iteratively calculate M1 and M2,

M1 = M1 + xS2
t xS2

t

>
andM2 = M2 + xS2

t xS1
t

>
,

then,
M∗ = M−1

1 M2.

On the other hand, if the period is not very short, we
can learn a more complex nonlinear relationship than the
linear one. A corresponding complicated one compared to
the linear least squares is the kernel least squares

min
Θ

∑T1

t=T1−B+1

1

2
‖xS1
t −Θ(φ(xS2

t))‖22

where φ : Rd2 → H is a nonlinear feature mapping from
feature space Rd2 to a Reproducing Kernel Hilbert Space H.
Θ : H → Rd1 is a linear function from H to feature space
Rd1 . Thus, ψ = Θ ◦ φ.

We still expect that during the overlapping period, we
can learn a mapping in an online way rather than a budget
to store instances. Thus we prefer online gradient descent
approach [39] to solve the kernel least square problem.

Let `(Θt) = 1/2‖xS1 −Θt(φ(xS2))‖22. At each iteration of
gradient descent, given the training example (xS2

t , x
S1
t), we

update the current classifier Θt−1 by

Θt = Θt−1 − µ∇Θ`(Θt−1),

where µ is the step size.∇Θ denotes the gradient with respect
to Θ and is given by

∇Θ`(Θt−1) = −`′(Θt−1)κ(xS2
t , ·)

where `′(Θt−1) = xS1
t − Θt−1(φ(xS2

t)) and κ(x1, x2) =
φ(x1)>φ(x2),∀x1, x2 ∈ Rd2 is the kernel function. Let
et = `′(Θt−1), we have

Θt = µ
∑t

i=T1−B+1
eiκ(xS2

i , ·).

Thus,

et = xS1
t − µ

∑t−1

i=T1−B+1
eiκ(xS2

i , x
S2
t).

We know that ψ = Θ ◦ φ, so the approximate solution can be
obtained by

ψ(xS2) = µ
∑T1

t=T1−B+1
etκ(xS2

t , x
S2) (3)

where xS2 is a test instance from feature space S2.
Then if we only observe an instance xS2

t ∈ Rd2 from S2,
we can recover an instance in S1 by ψ(xS2) ∈ Rd1 , to which
w1,T1

can be applied. Based on this idea, we will make two
changes to the baseline algorithm:
• During rounds T1 − B + 1, . . . , T1, we will learn a

relationship ψ from (xS1

T1−B+1, xS2

T1−B+1), . . . , (xS1

T1
, xS2

T1
).

• From rounds t > T1, we will keep on updating w1,t

using the recovered data ψ(xS2
t) and predict the target

by utilizing the predictions of w1,t and w2,t.
In round t > T1, the learner can calculate two base pre-

dictions based on models w1,t and w2,t: f1,t = w>1,t(ψ(xS2
t))

and f2,t = w>2,tx
S2
t . By utilizing the two base predictions

in each round, we propose two methods, both of which
are able to follow the better base prediction empirically
and theoretically. The process to obtain the relationship
mapping ψ and w1,T1 during rounds 1, . . . , T1 are concluded
in Algorithm 1.

Algorithm 1 Initialize
1: Initialize w1,1 ∈ Ω1 randomly;
2: for t = 1, 2, . . . , T1 do
3: Receive xS1

t ∈ Rd1 and predict ft = w>
1,tx

S1
t ∈ R;

4: Receive the target yt ∈ R, and suffer loss `(ft, yt);
5: Update w1,t using (1) where τt = 1/

√
t;

6: if t > T1 −B then
7: Learn ψ using (2) or (3);

4.2 Weighted Combination
We first propose an ensemble method by combining predic-
tions with weights based on exponential of the cumulative
loss [24]. The prediction at time t is the weighted average of
all the base predictions:

p̂t =

∑2
i=1 αi,tfi,t∑2
i=1 αi,t

, i = 1, 2 (4)

where αi,t is the weight of the i-th base prediction. With the
previous loss of each base model, we can update the weights
of the two base models as follows:

αi,t =
e−ηLi,t∑2
j=1 e

−ηLj,t
(5)

where η is a tuned parameter and Li,t is the cumulative loss
of the i-th base model until time t:

Li,t =
t∑

s=1

`(fi,s, ys), i = 1, 2.

We can also rewrite (5) in an incremental way, which can be
calculated more efficiently:

αi,t+1 =
αi,te

−η`(fi,t,yt)∑2
j=1 αj,te

−η`(fj,t,yt)
, i = 1, 2. (6)

The updating rule of the weights shows that if the loss
of one of the models on previous round is large, then its
weight will decrease in next round, which is reasonable and
can derive a good theoretical result shown in Theorem 1.
Algorithm 2 summarizes our first approach for FESL named
as FESL-c(ombination). We first learn a model w1,T1

using
online gradient descent on rounds 1, . . . , T1, during which,
we also learn a relationship ψ for t = T1 − B + 1, . . . , T1.
For t = T1 + 1, . . . , T1 + T2, we learn a model w2,t on each
round and keep updating w1,t on the recovered data ψ(xS2

t)
shown in (7) where τt is a varied step size:

w1,t+1 = ΠΩi

(
w1,t − τt∇`(w>1,t(ψ(xS2

t)), yt)
)
. (7)

Then we combine the predictions of the two models by
weights calculated in (6).

Analysis
In this paragraph, we borrow the regret from online learning
to measure the performance of FESL-c. Specifically, we give
a loss bound as follows which shows that the performance
will be improved with assistance of the old feature space. We
define that LS1 and LS2 are two cumulative losses suffered
by base models on rounds T1 + 1, . . . , T1 + T2,

LS1 =
T1+T2∑
t=T1+1

`(f1,t, yt), L
S2 =

T1+T2∑
t=T1+1

`(f2,t, yt), (8)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 5

Algorithm 2 FESL-c(ombination)
1: Initialize ψ and w1,T1 during 1, . . . , T1 using Algorithm 1;
2: α1,T1 = α2,T1 = 1

2
;

3: Initialize w2,T1+1 randomly and w1,T1+1 by w1,T1 ;
4: for t = T1 + 1, T1 + 2, . . . , T1 + T2 do
5: Receive xS2

t ∈ RS2 ;
6: Predict f1,t = w>

1,t(ψ(xS2
t)) and f2,t = w>

2,tx
S2
t ;

7: Predict p̂t ∈ R using (4);
8: Receive the target yt ∈ R, and suffer loss `(p̂t, yt);
9: Update weights using (6);

10: Update w1,t using (7) where τt = 1/
√
t− T1;

11: Update w2,t using (1) where τt = 1/
√
t− T1;

and LS12 is the cumulative loss suffered by our methods:
LS12 =

∑T1+T2

t=T1+1 `(p̂t, yt). Then we have:

Theorem 1. Assume that the loss function ` is convex in its first
argument and that it takes value in [0,1]. For all T2 > 1 and for
all yt ∈ Y with t = T1 + 1, . . . , T1 + T2, LS12 with parameter
η =

√
8(ln 2)/T2 satisfies

LS12 ≤ min(LS1 , LS2) +
√

(T2/2) ln 2. (9)

Remarks: This theorem implies that the cumulative loss
LS12 of Algorithm 2 over rounds T1 + 1, . . . , T1 + T2 is
comparable to the minimum of LS1 and LS2 . Furthermore,
we define C =

√
(T2/2) ln 2. If LS2 − LS1 > C, it is easy to

verify that LS12 is smaller than LS2 . In summary, on rounds
T1 + 1, . . . , T1 + T2, when w1,t is better than w2,t to certain
degree, the model with assistance from S1 is better than that
without assistance.

A loss function ` is exponentially concave (exp-concave) for
a certain η > 0 if the function F (z) = e−η`(z,y) is concave
for all y ∈ Y . For example, logistic loss and square loss are
both exp-concave. If the loss function is exp-concave, we can
have a tighter bound than that in Theorem 1 as follows.

Theorem 2. Assume that the loss function ` is exp-concave in its
first argument and that it takes value in [0, 1]. For all T2 > 1 and
for all yt ∈ Y with t = T1 + 1, . . . , T1 + T2, LS12 satisfies

LS12 ≤ min(LS1 , LS2) +
ln 2

η
(10)

where η is set by 1 for logistic loss and 1
2 for square loss.

Remarks: We can see that the second item on the right
side of (10) is a constant and converges to 0 at the rate of
1/T2 when considering the average of the cumulative loss
whereas the one in (9) is not a constant and converges to 0 at
the rate of 1/

√
T2.

4.3 Dynamic Selection

The combination approach mentioned in the above subsec-
tion combines several base models to improve the overall
performance. Generally, combination of several classifiers
performs better than selecting only one single classifier [40].
However, in ensemble learning, although diversity is impor-
tant, it requires that the performance of base models should
not be too bad [41], for example, in Adaboost the accuracy
of the base classifiers should be no less than 0.5 [42]. Never-
theless, in our FESL problem, on rounds T1 + 1, . . . , T1 + T2,
w2,t cannot satisfy the requirement in the beginning due to

Algorithm 3 FESL-s(election)
1: Initialize ψ and w1,T1 during 1, . . . , T1 using Algorithm 1;
2: α1,T1 = α2,T1 = 1

2
;

3: Initialize w2,T1+1 randomly and w1,T1+1 by w1,T1 ;
4: for t = T1 + 1, T1 + 2, . . . , T1 + T2 do
5: Receive xS2

t ∈ RS2 ;
6: Predict f1,t = w>

1,t(ψ(xS2
t)) and f2,t = w>

2,tx
S2
t ;

7: Draw a model wi,t according to the distribution (11);
8: Predict p̂t = fi,t according to the model drawn above;
9: Receive the target yt ∈ R, and suffer loss `(p̂t, yt);

10: Update the weights using (12).
11: Update w1,t using (7) where τt = 1/

√
t− T1;

12: Update w2,t using (1) where τt = 1/
√
t− T1;

insufficient training data and w1,t may become worse when
more and more data come causing a cumulation of recovered
error. Thus, it may not be appropriate to combine the two
models all the time, whereas dynamically selecting the best
single one could be a better choice. Hence we propose a
method based on a new strategy, i.e., dynamic selection,
similar to the Dynamic Classifier Selection [40] that only uses
the best single model rather than combining both of them
in each round. Note that, though we only select one of the
models, we retain and utilize both of them to update their
weights. So it is still an ensemble method. The basic idea
of dynamic selection is to select the model of larger weight
with higher probability. Algorithm 3 summarizes our second
approach for FESL named as FESL-s(election). Specifically,
the steps in Algorithm 3 on rounds 1, . . . , T1 is the same
as that in Algorithm 2. For t = T1 + 1, . . . , T1 + T2, we
still update weights of each model. However, when doing
prediction, we do not combine all the models’ prediction,
we adopt the result of the “best” model’s according to the
distribution of their weights

pi,t =
αi,t−1∑2
j=1 αj,t−1

i = 1, 2. (11)

To track the best model, we have a different way of updating
weights which is given as follows [24].

vi,t = αi,t−1e
−η`(fi,t,yt), i = 1, 2,

αi,t = δ
Wt

2
+ (1− δ)vi,t, i = 1, 2,

(12)

where we define Wt = v1,t + v2,t, δ = 1/(T2 − 1),
η =

√
8/T2 (2 ln 2 + (T2 − 1)H(1/(T2 − 1))) and H(x) =

−x lnx − (1 − x) ln(1 − x) is the binary entropy function
defined for x ∈ (0, 1).

Analysis
From rounds t > T1, the first model w1,t would become
worse due to the cumulative recovered error while the second
model will become better by the large amount of coming data.
Since w1,t is initialized by w1,T1

which is learnt from the old
feature space and w2,t is initialized randomly, it is reasonable
to assume that w1,t is better than w2,t in the beginning, but
inferior to w2,t after sufficient large number of rounds. Let s
be the round after which w1,t is worse than w2,t. We define
Ls =

∑s
t=T1+1 `(f1,t, yt) +

∑T2

t=s+1 `(f2,t, yt), we can verify
that

min
T1+1≤s≤T1+T2

Ls ≤ min
i=1,2

LSi . (13)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 6

Then a more ambitious goal is to compare the proposed
algorithm against w1,t from rounds T1 + 1 to s, and against
the w2,t from rounds s to T1 + T2, which motivates us to
study the following performance measure LS12−Ls. Because
the exact value of s is generally unknown, we need to bound
the worst-case LS12−minT1+1≤s≤T1+T2

Ls. An upper bound
of LS12 is given as follows.

Theorem 3. For all T2 > 1, if the model is
run with parameter δ = 1/(T2 − 1) and η =√

8/T2 (2 ln 2 + (T2 − 1)H(1/T2 − 1)), then

LS12 ≤ min
T1+1≤s≤T1+T2

Ls +

√
T2

2

(
2 ln 2 +

H(δ)

δ

)
(14)

where H(x) = −x lnx− (1−x) ln(1−x) is the binary entropy
function.

Remarks: According to Theorem 3 we know that LS12

is comparable to minT1+1≤s≤T1+T2
Ls. Due to (13), we can

conclude that the upper bound of LS12 in Algorithm 3 is
tighter than that of Algorithm 2.

5 DETAILED PROOFS OF THEOREMS

In this section, we will give the detailed proofs of the three
theorems in Section 4. The three theorems are the special
cases of Theorem 2.2, Proposition 3.1 and Corollary 5.1
respectively in [24].

5.1 Proof of Theorem 1

To prove Theorem 1, we propose to bound the related
quantities (1/η) ln(At/At−1) where

At =
2∑
i=1

αi,t =
2∑
i=1

e−ηL
Si
t

for t ≥ T1+1, andAT1
= 2. LSi

t is the cumulative loss at time
t of the i-th base learner, namely LSi

t =
∑t
s=T1+1 `(fi,s, ys).

Note that here αi,t has not been normalized. In the proof we
use the following classical inequality due to Hoeffding [43].

Lemma 1. Let X be a random variable with a ≤ X ≤ b. Then
for any s ∈ R,

lnE[esX] ≤ sEX +
s2(b− a)2

8

The detailed proof of Lemma 1 can be found in Section
A.1 of the Appendix in [24].

Proof of Theorem 1. First observe that

ln
AT1+T2

AT1

= ln

(
2∑
i=1

e−ηL
Si
T1+T2

)
− ln 2

≥ ln

(
max
i=1,2

e−ηL
Si
T1+T2

)
− ln 2

= −η min
i=1,2

LSi

T1+T2
− ln 2.

(15)

On the other hand, for each t = T1 + 1, . . . , T1 + T2,

ln
At
At−1

= ln

∑2
i=1 e

−η`(fi,t,yt)e−ηL
Si
t−1∑2

j=1 e
−ηL

Sj
t−1

= ln

∑2
i=1 αi,t−1e

−η`(fi,t,yt)∑2
j=1 αj,t−1

.

Now using Lemma 1, we observe that the quantity above
may be upper bounded by

−η
∑2
i=1 αi,t−1`(fi,t, yt)∑2

j=1 αj,t−1

+
η2

8

≤ −η`
(∑2

i=1 αi,t−1fi,t∑2
j=1 αj,t−1

, yt

)
+
η2

8

= −η`(p̂t, yt) +
η2

8

where we used the convexity of the loss function in its first
argument and the way how the weight updates. Summing
over t = T1 + 1, . . . , T1 + T2, we get

ln
AT1+T2

AT1

≤ −ηLS12 +
η2

8
T2. (16)

Combining this with the lower bound (15) and solving for
LS12 , we find that

LS12 ≤ min(LS1 , LS2) +
ln 2

η
+
η

8
T2

as desired. In particular, with η =
√

8 ln 2/T2, the upper
bound becomes min(LS1 , LS2) +

√
(T2/2) ln 2.

5.2 Proof of Theorem 2

It is convenient to introduce the potential function Φ : RN → R
of the form

Φ(u) = ψ

(
N∑
i=1

φ(ui)

)
where φ : R→ R is any nonnegative, increasing, and twice
differentiable function, and ψ : R → R is any nonnegative,
strictly increasing, concave, and twice differentiable auxiliary
function. Here we use the exponential potential

Φη(u) =
1

η
ln

(
N∑
i=1

eηui

)
.

We define ri,t = `(p̂t, yt) − `(fi,t, yt) as the instantaneous
regret with respect to base model i ∈ {1, 2} at time t and
Ri,t = Lt−Li,t as the cumulative regret with respect to base
model i ∈ {1, 2} until time t where Lt =

∑t
s=T1+1 `(p̂s, ys)

and Li,t =
∑t
s=T1+1 `(fi,s, ys), i = 1, 2. Then Rt =

(R1,t, R2,t) ∈ R2 is a two dimensional vector. Recall that
a loss function ` is exp-concave for a certain η > 0 if the
function F (z) = e−η`(z,y) is concave for all y ∈ Y . Then we
have the following lemma:

Lemma 2. If the loss function ` is exp-concave for η > 0, then
the regret of FESL-c (used with the same value of η) satisfies, for
all y1, . . . , yn ∈ Y, Φη(Rn) ≤ Φη(0).

The detailed proof of Lemma 2 can be found in Section
3.3 in [24].

Proof of Theorem 2. Using Φη(Rn) ≤ Φη(0) in Lemma 2 we
immediately get

LS12 −min(LS1 , LS2) = max{R1,n, R2,n}

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 7

≤ 1

η
ln

2∑
j=1

eηRj,n = Φη(Rn) ≤ Φη(0) =
ln 2

η

where n = T1 + T2. The logistic loss and square loss that we
use in our work are both exp-concave when η = 1 and η ≤ 1

2
respectively [24].

5.3 Proof of Theorem 3

To prove Theorem 3, we first give some definitions. Since
we only choose one base learner’s prediction in FESL-s as
our final prediction in each round, we use It ∈ {1, 2} to
denote the index of the base learners in t-th round for t =
T1 + 1, . . . , T1 +T2. We call It an action. So the loss in round
t can be denoted as `(It, yt). Thus, randomly choosing one
base learner in each round is a randomized version of FESL-
c, so we call it randomized FESL-c. Denote the distribution
according to which the random action It is drawn at time
t by pt = (p1,t, p2,t), and ¯̀(pt, yt) =

∑2
i=1 pi,t`(It, yt) is the

expected loss of randomized FESL-c at time t. Then we have
the following lemma:

Lemma 3. Let T2 > 1 and δ ∈ (0, 1). The randomized FESL-c
with η =

√
8 ln 2/n satisfies, with probability at least 1− δ

T1+T2∑
t=T1+1

`(It, yt)−min
i=1,2

T1+T2∑
t=T1+1

`(i, yt) ≤
√
T2 ln 2

2
+

√
T2

2
ln

1

δ
.

Proof. The random variables `(It, yt) − ¯̀(pt, yt), for t =
T1 + 1 . . . , T1 + T2, form a sequence of bounded martingale
differences. With a simple application of the Hoeffding-
Azuma inequality and combining the results of Theorem 1,
we yield the result of this lemma.

In addition, iT1+1, . . . , is, is+1, . . . , iT1+T2
is defined as

the sequence of the base learner’s index such that we
can study a more ambitious goal g = LS12 − Ls where
Ls =

∑T1+T2

t=T1+1 `(it, yt). It is not difficult to modify the
randomized FESL-c in order to achieve this goal. Specifically,
we associate a compound action with each sequence which only
switches once. Then we can run our randomized FESL-c over
the set of compound actions: at any time t the randomized
FESL-c draws a compound action (IT1+1, . . . , IT1+T2

) and
plays action It. Denote by M the number of all compound
actions. Then, in FESL-c, we only have 2 base learners while
in randomized FESL-c, we have M base learners. Then
Lemma 3 implies that g is bounded by

√
(T2 lnM)/2. Hence,

it suffices to count the number of compound actions: for each
k = 0, . . . , 1 there are CkT2−1 ways to pick k time steps
t = T1 + 1, . . . , T1 + T2 − 1 where a switch it 6= it+1 occurs,
and there are 2(2 − 1)k ways to assign a distinct action to
each of the k + 1 resulting blocks. This gives

M =
m∑
k=0

CkT2−12 ≤ 4 exp

(
(T2 − 1)H

(
1

T2 − 1

))
.

whereH(x) = −x lnx−(1−x) ln(1−x) is the binary entropy
function defined for x ∈ (0, 1). Substituting this bound in√

(T2 lnM)/2, we find that g satisfies

g ≤

√
T2

2

(
2 ln 2 + (T2 − 1)H(

1

T2 − 1
)

)

on any action sequence iT1+1, . . . , is, is+1, . . . , iT1+T2
. How-

ever, the randomized FESL-c is required to explicitly manage
an exponential number of compound actions in its straight-
forward implementation. Then we propose FESL-s which can
efficiently implement a generalized version of randomized
FESL-c that is able to achieve g. Specifically, FESL-s is derived
from a variant of randomized FESL-c where the initial weight
distribution is not uniform. We have the following results.

Lemma 4. For all T2 > 1, if the randomized FESL-c is run
using initial weights α1,T1 , α2,T1 ≥ 0 such that AT1+T2 =
α1,T1+T2 + α2,T1+T2 ≤ 1, then

T1+T2∑
t=T1+1

¯̀(pt, yt) ≤
1

η
ln

1

AT1+T2

+
η

8
T2,

where

AT1+T2
=

2∑
i=1

αi,T1+T2
=

2∑
i=1

αi,T1
e−η

∑T1+T2
t=T1+1 `(i,yt)

is the sum of the weights after T2 rounds.

Proof. From equation (16), we know that

ln
AT1+T2

AT1

≤ −η
T1+T2∑
t=T1

¯̀(pt, yt) +
η2

8
T2

where At =
∑2
i=1 αi,t =

∑2
i=1 e

−ηLSi
t . Since AT1 ≤ 1, then

we have
T1+T2∑
t=T1+1

¯̀(pt, yt) ≤
1

η
lnAT1 −

1

η
lnAT1+T2 +

ηT2

8

=
1

η
ln

1

AT1+T2

+
ηT2

8
− 1

η
ln

1

AT1

≤ 1

η
ln

1

AT1+T2

+
ηT2

8
.

We write α′t(iT1+1, . . . , iT1+T2
) to denote the weight

assigned at time t by the randomized FESL-c to the com-
pound action (iT1+1, . . . , iT1+T2

). For any fixed choice of the
parameter δ ∈ (0, 1), the initial weights of the compound
actions are defined by

α′T1
(iT1+1, . . . , iT1+T2

) =
1

2

(
δ

2

)(
1− δ +

δ

2

)T2−1

.

Then the way of updating weight is as follows:

α′t(iT1+1, . . . , iT1+T2
)

= α′T1
(iT1+1, . . . , iT1+T2) exp

(
−η

t∑
s=1

`(is, ys)

)
.

Introducing the “marginalized” weights

α′T1
(iT1+1, . . . , iT1+T2

)

=
∑

it+1,...,iT1+T2

α′T1
(iT1+1, . . . , it, it+1, . . . , iT1+T2

)

for all t = T1 + 1, . . . , T1 + T2, we obtain that FESL-s draws
action i at time t + 1 with probability α′i,t/A

′
t, where A′t =

α′1,t + α′2,t and

α′i,t =
∑

i1,...,it,it+2,...,in

α′t(iT1+1, . . . , it, i, it+2, . . . , iT1+T2
)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 8

for t ≥ T1 + 1 and α′i,T1
= 1/2.

The initial weights are recursively computed as follows

α′T1
(i1) = 1/2, α′T1

(iT1+1, . . . , it+1)

= α′T1
(iT1+1, . . . , it)

(
δ

2
+ (1− δ)I{it+1=it}

)
.

The following result shows that FESL-s is indeed an
efficient version of randomized FESL-c.

Theorem 4. For all i = 1, 2, t = T1 +1, . . . , T1 +T2, δ ∈ [0, 1],
we have αi,t = α′i,t, where αi,t is the weight of the i-th base learner
at time t in FESL-s, and α′i,t is the weight of the conditional
distribution of action I ′t drawn at time t by randomized FESL-c
run over the compound actions (iT1+1, . . . , iT1+T2

) using initial
weights α′T1

(iT1+1, . . . , iT1+T2
) set with the same value of δ.

Proof. We proceed by induction on t. For t = T1, αi,T1
=

α′i,T1
= 1/2 for all i. For the induction step, assume that

αi,s = α′i,s for all i and s < t. We have

α′i,t =
∑

i1,...,it,it+2,...,in

α′t(iT1+1, . . . , it, i, it+2, . . . , iT1+T2)

=
∑

iT1+1,...,it

exp

(
−η

t∑
s=1

`(is, ys)

)
α′T1

(iT1+1, . . . , it, i)

=
∑

iT1+1,...,it

exp

(
−η

t∑
s=1

`(is, ys)

)
α′T1

(iT1+1, . . . , it)

α′T1
(iT1+1, . . . , it, i)

α′T1
(iT1+1, . . . , it)

=
∑

iT1+1,...,it

exp

(
−η

t∑
s=1

`(is, ys)

)
α′T1

(iT1+1, . . . , it)(
δ

2
+ (1− δ)I{it=i}

)
(using the recursive definition of α′T1

)

=
∑
it

e−η`(it,yt)α′it,t−1

(
δ

2
+ (1− δ)I{it=i}

)
=
∑
it

e−η`(it,yt)αit,t−1

(
δ

2
+ (1− δ)I{it=i}

)
(by the induction hypothesis)

=
∑
it

vit,t

(
δ

2
+ (1− δ)I{it=i}

)
(using (12).1)

= αi,t (using (12).2)

Then we have a general result for FESL-s.

Theorem 5. For all n ≥ T1 + 1, the goal of the FESL-s g satisfies

g =
n∑

t=T1+1

¯̀(pt, yt)−
n∑

t=T1+1

`(it, yt) ≤
2

η
ln 2

+
1

η
ln

1

(δ/2)(1− δ)n−2
+
η

8
n

for all action sequences iT1+1, . . . , iT1+T2 .

Proof. For a compound action iT1+1, . . . , iT1+T2
we have

lnα′T1+T2
(iT1+1, . . . , iT1+T2

) = lnα′T1
(iT1+1, . . . , iT1+T2

) −
η
∑T1+T2

t=T1+1 `(it, yt). By definition of α′T1
,

α′T1
(iT1+1, . . . , iT1+T2) =

1

N

(
δ

2

)(
δ

2
+ (1− δ)

)T1+T2−2

≥ 1

2

(
δ

2

)
(1− δ)T1+T2−2.

Therefore, using this in the bound of Lemma 4 we get, for
any sequence (iT1+1, . . . , iT1+T2),

n∑
t=1

¯̀(pt, yt) ≤
1

η
ln

1

A′T1+T2

+
η

8
T2

≤ 1

η
ln

1

α′T1+T2
(iT1+1, . . . , iT1+T2)

+
η

8
T2

≤
n∑
t=1

`(it, yt) +
1

η
ln 2 +

1

η
ln

2

δ

− T2 − 2

η
ln(1− δ) +

η

8
T2,

which concludes the proof.

With Lemma 4 and Theorem 5, we give the proof of
Theorem 3 as follows.

Proof of Theorem 3. First, note that for δ = 1/(T2 − 1)

ln
1

δ(1− δ)T2−2
= − ln

1

T2 − 1
− (T2 − 2) ln

T2 − 2

T2 − 1

= (T2 − 1)H(
1

T2 − 1
).

Using η =

√
8
T2

(
2 ln 2 + (T2 − 1)H(1

T2−1)
)

in the bound of

Theorem 5 we obtain that
T1+T2∑
t=T1+1

¯̀(pt, yt)−
T1+T2∑
t=T1+1

`(it, yt)

≤

√
T2

2

(
2 ln 2 + (T2 − 1)H(

1

T2 − 1
)

)
for all action sequences iT1+1, . . . , iT1+T2 , namely,

LS12 ≤ min
T1+1≤s≤T1+T2

Ls +

√
T2

2

(
2 ln 2 +

H(δ)

δ

)
.

6 EXPERIMENTS

In this section, we first introduce the compared methods
and settings. Then we present the results on synthetic data,
Reuter data and real data.

6.1 Compared Approaches and Settings
We compare our FESL-c and FESL-s with three approaches.
One is mentioned in Section 3, where once the feature space
changed, the online gradient descent algorithm will be in-
voked from scratch, named as NOGD (Naive Online Gradient
Descent). The other two approaches utilize the model learned
from feature space S1 by online gradient descent to do
predictions on the recovered data. The difference between

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 9

Table 1
Detailed description of datasets: let n be the number of examples, and d1 and d2 denote the dimensionality of the first and second feature space,

respectively. The first 9 datasets in the left column are synthetic datasets, “r.EN-GR” means the dataset EN-GR comes from Reuter and “RFID” and
“Amazon” are the real datasets.

Dataset n d1 d2 Dataset n d1 d2 Dataset n d1 d2
Australian 690 42 29 r.EN-FR 18,758 21,531 24,892 r.GR-FR 29,953 34,279 24,892
Credit-a 653 15 10 r.EN-GR 18,758 21,531 34,215 r.GR-IT 29,953 34,279 15,505
Credit-g 1,000 20 14 r.EN-IT 18,758 21,531 15,506 r.GR-SP 29,953 34,279 11,547
Diabetes 768 8 5 r.EN-SP 18,758 21,531 11,547 r.IT-EN 24,039 15,506 21,517
DNA 940 180 125 r.FR-EN 26,648 24,893 21,531 r.IT-FR 24,039 15,506 24,892
German 1,000 59 41 r.FR-GR 26,648 24,893 34,287 r.IT-GR 24,039 15,506 34,278
Kr-vs-kp 3,196 36 25 r.FR-IT 26,648 24,893 15,503 r.IT-SP 24,039 15,506 11,547
Splice 3,175 60 42 r.FR-SP 26,648 24,893 11,547 RFID 940 78 72
Svmguide3 1,284 22 15 r.GR-EN 29,953 34,279 21,531 Amazon 23,025 567 463

them is that one keeps updating with the recovered data
while the other does not. The one that keeps updating is
called Updating Recovered Online Gradient Descent (ROGD-
u) and the other which keeps fixed is called Fixed Recovered
Online Gradient Descent (ROGD-f). Note that in section 4.2,
we mention that from rounds t > T1, we will keep on
updating w1,t using the recovered data xS1

t and predict
the target by combining the predictions of w1,t and w2,t.
Here, w1,t corresponds to the Updating Recovered Online
Gradient Descent. It is reasonable to conjecture that the
ROGD-u will be better than ROGD-f if the recovered data is
beneficial, and conversely ROGD-f will be better than ROGD-
u when the recovering is not appropriate so as to degenerate
the performance of ROGD-u. It is noteworthy that we do
not compare our methods to multi-view methods, transfer
learning methods or other methods that involve multiple
feature sets since we have mentioned in Section 2 that multi-
view methods and transfer learning methods always possess
multiple feature sets while ours do not. Thus these methods
do not meet our condition. OPID [35] is the most related
work to ours. However, they handles situations where there
is no overlapping period which also does not satisfy our
settings and thus we do not compare our methods with it.

We conduct our experiments on 27 datasets consisting of
9 synthetic datasets, 16 Reuter datasets and 2 real dataset.
The details of all the datasets are summarized in Table 1.
For the synthetic and Reuter data, we learn linear mappings
from the overlapping period. As for synthetic data, we want
to verify the effectiveness of our theorem which shows that
our methods are always comparable to the best baseline
method. Thus we only conduct the synthetic experiments by
learning linear mapping which is easy and effective to verify
our theorem. On the Reuter data, which are multi-view data
containing two feature spaces, although we do not know
the relationship between the two feature spaces, we assume
the relationship between them is linear. The reason is that
Reuter data possess large scale of sparse features (e.g., for
EN-FR data, it possesses 21, 531 and 24, 892 features and
the ratio of nonzero elements is only 0.0035). For large-scale
number of features, learning linear mapping is more efficient
than nonlinear one; for sparse features, [44] shows that linear
mapping can achieve promising performance. Thus for the
large scale and sparse Reuter data, we only consider linear
relationship between two feature spaces to achieve a high-
efficient as well as well-performed mapping. For the real
datasets that we collect by ourselves, we learn both linear

and nonlinear mapping since we do not have any prior
knowledge whether the relationship between the old feature
space and the new one is linear or not. Besides, the real
datasets neither have large number of features nor is sparse.
So it is valuable to test which mapping is better.

We evaluate the empirical performances of the proposed
approaches on classification and regression tasks on rounds
T1 + 1, . . . , T1 + T2. We use logistic loss in classification task
and square loss in regression task. To verify that our analysis
is reasonable, we present the trend of average cumulative
loss. Concretely, at each time t′, the loss ¯̀

t′ of every method
is the average of the cumulative loss over 1, . . . , t′, namely

average cumulative loss ¯̀
t′ = (1/t′)

∑t′

t=1
`t. (17)

We also present the classification performance over all
instances on rounds T1 + 1, . . . , T1 + T2 on synthetic and
Reuter data. The performances of all approaches are obtained
by average results over 10 independent runs on synthetic
data. Due to the large scale of Reuter data, we only conduct 3
independent runs on Reuter data and report the average
results. The parameters we need to set are the number
of instances in overlapping period, i.e., B, the number of
instances in S1 and S2, i.e., T1 and T2 and the step size,
i.e., τt where t is time. For all baseline methods and our
methods, the parameters are the same. The details of the
parameter setting for three kinds of datasets (e.g., synthetic
datasets, Reuter datasets and real datasets) are described in
the corresponding section.

6.2 Experiments on Synthetic Data
We first conduct our experiments on 9 synthetic datasets. To
generate synthetic data, we randomly choose some datasets
from different domains including economy and biology, etc1

whose scales vary from 690 to 3, 196. They only have one
feature space at first. We artificially map the original datasets
into another feature space by random Gaussian matrices,
then we have data both from feature space S1 and S2. Since
the original data are in batch mode, we manually make them
come sequentially. In this way, synthetic data are completely
generated. The details of synthetic datasets are presented in
Table 1. The number of rounds in the overlapping period B
is flexible. The larger, the more effective the recovered data.
Here, we set the size of it by 5 or 10. And we set almost both

1. Datasets can be found in http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 10

Table 2
Accuracy with its variance on synthetic datasets by linear mapping. The best ones among all the methods are bold.

Dataset australian credit-a credit-g diabetes dna german kr-vs-kp splice svmguide3
NOGD .767±.009 .811±.006 .659±.010 .650±.002 .610±.013 .684±.006 .612±.005 .568±.005 .680±.010
ROGD-u .849±.009 .826±.018 .733±.006 .652±.009 .610±.023 .700±.002 .621±.036 .612±.022 .779±.010
ROGD-f .809±.025 .785±.051 .716±.011 .651±.006 .608±.064 .700±.002 .538±.024 .567±.057 .748±.012
FESL-c .849±.009 .827±.014 .733±.006 .652±.007 .691±.023 .700±.001 .626±.028 .612±.022 .779±.010
FESL-s .849±.009 .831±.009 .733±.006 .652±.009 .692±.021 .703±.004 .630±.016 .612±.022 .778±.010

70 139 208 277

Time

0.06

0.08

0.10

0.12

0.14

Lo
ss

(a) australian

66 131 196 261 326

Time

0.4

0.6

0.8

1.0

1.2
Lo

ss

(b) credit-a

101 201 301 401

Time

1

2

3

4

Lo
ss

(c) credit-g

77 153 229 305 381

Time

0.7

0.8

0.9

1.0

Lo
ss

(d) diabetes

95 189 283 377 471

Time

0

0.5

1.0

Lo
ss

(e) dna

101 201 301 401

Time

0.1

0.2

0.3

0.4

0.5

Lo
ss

(f) german

320 639 958 1277 1596

Time

0.2

0.4

0.6

0.8

Lo
ss

(g) kr-vs-kp

318 635 952 1269

Time

0.10

0.15

0.20
Lo

ss

(h) splice

129 257 385 513 641

Time

1

2

3

Lo
ss

(i) svmguide3
legend

Figure 3. The trend of loss with three baseline methods and the proposed methods on synthetic data by linear mapping. The smaller
the cumulative loss is, the better. All the average cumulative loss at any time of our methods is comparable to the best of baseline
methods and 8 of 9 are smaller.

T1 and T2 to be half of the number of instances. We set the
step size τt to be 1/(c

√
t) where c is searched in the range

{1, 10, 50, 100, 150}. Specifically, we set c

• 1 for australian, credit-a, credit-g and svmguide3;
• 10 for diabetes and splice; 50 for german;
• 100 for kr-vs-kp; 150 for dna.

Table 2 shows the accuracy results on synthetic datasets.
We can see that for synthetic datasets, FESL-s outperforms
other methods on 8 datasets, FESL-c gets the best on 5
datasets and ROGD-u also gets 5. NOGD performs worst
since it starts from scratch. ROGD-u is better than NOGD
and ROGD-f because ROGD-u exploits the old better-trained
model from old feature space and keep updating with
recovered instances. Our two methods are based on NOGD
and ROGD-u. We can see that our methods can follow the
best baseline method or even outperform it.

Figure 3 gives the trend of average cumulative loss. The
smaller the average cumulative loss, the better. From the
experimental results, we have the following observations.
First, all the curves with circle marks representing NOGD
decrease rapidly which conforms to the fact that NOGD
on rounds T1 + 1, . . . , T1 + T2 becomes better and better
with more and more data coming. Besides, the curves with
star marks representing ROGD-u also decline but not very
apparent since on rounds 1, . . . , T1, ROGD-u already learned
well and tend to converge, so updating with more recovered
data could not bring too much benefits. Moreover, the curves
with plus marks representing ROGD-f does not drop down
but even go up instead, which is also reasonable because it is
fixed and if there are some recovering error, it will perform

worse. Lastly, our methods are based on NOGD and ROGD-
u, so their average cumulative loss also decrease. As can
be seen from Figure 3, the average cumulative loss of our
methods is comparable to the best of baseline methods on all
synthetic datasets and are smaller than them on 6 datasets.
And FESL-s exhibits slightly smaller average cumulative loss
than FESL-c.

6.3 Experiments on Reuter Data
Then we conduct our experiments on 16 datasets from
Reuter [45]. They are multi-view datasets which have large
scale varying from 18, 758 to 29, 953. Each dataset has two
views which represent two different kinds of languages,
respectively. We regard the two views as the two feature
spaces. Now they do have two feature spaces but the original
data is in batch mode, so we will artificially make them come
in a streaming way. The details of the Reuter datasets are
presented in Table 1. Here, we set the number of rounds in the
overlapping period to be 50. We set both T1 and T2 to be the
half of the number of instances. We set the step size τt to be
1/(c
√
t) where c is searched in the range {1, 10, 50, 100, 150}.

Specifically, we set c
• 10 for r.GR-IT, r.GR-SP;
• 50 for r.EN-FR, r.EN-IT, r.EN-SP, r.FR-GR, r.FR-IT, r.FR-

SP, r.GR-EN, r.IT-EN, r.IT-FR, r.IT-GR, r.IT-SP;
• 100 for r.FR-EN; 150 for r.EN-GR, r.GR-FR.

When drawing the figures, to clearly see what is going on in
the beginning, we only keep the first one-fifth of the results
since the last four-fifths of the results tend to converge and
vary a little.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 11

Table 3
Accuracy with its variance on Reuter datasets. The larger the better. The best ones among all the methods are bold.

Dataset r.EN-FR r.EN-GR r.EN-IT r.EN-SP r.FR-EN r.FR-GR r.FR-IT r.FR-SP
NOGD .902±.004 .867±.005 .858±.014 .900±.002 .858±.007 .869±.004 .874±.005 .872±.001
ROGD-u .849±.003 .836±.007 .847±.014 .848±.002 .776±.009 .774±.019 .780±.022 .778±.022
ROGD-f .769±.069 .802±.036 .831±.018 .825±.001 .754±.012 .753±.021 .744±.040 .735±.013
FESL-c .903±.003 .870±.002 .861±.010 .901±.001 .858±.007 .870±.004 .874±.005 .872±.001
FESL-s .902±.005 .870±.003 .863±.013 .899±.002 .858±.007 .868±.003 .873±.005 .871±.002

Dataset r.GR-EN r.GR-FR r.GR-IT r.GR-SP r.IT-EN r.IT-FR r.IT-GR r.IT-SP
NOGD .907±.000 .898±.001 .847±.011 .902±.001 .854±.003 .863±.002 .849±.004 .839±.006
ROGD-u .850±.007 .827±.009 .851±.017 .845±.003 .760±.006 .753±.012 .736±.022 .753±.014
ROGD-f .801±.035 .802±.023 .816±.006 .797±.012 .730±.024 .730±.020 .702±.012 .726±.005
FESL-c .907±.001 .898±.001 .850±.018 .902±.001 .856±.002 .864±.002 .849±.004 .839±.007
FESL-s .906±.000 .898±.000 .851±.017 .902±.001 .854±.003 .862±.003 .846±.004 .839±.006

626 1251 1876 2501 3126

Time

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(a) EN-FR

626 1251 1876 2501 3126

Time

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(b) EN-GR

626 1251 1876 2501 3126

Time

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(c) EN-IT

376 751 1126 1501
Time

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(d) EN-SP

889 1777 2665 3553 4441

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(e) FR-EN

889 1777 2665 3553 4441

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(f) FR-GR

889 1777 2665 3553 4441

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(g) FR-IT

533 1065 1597 2129 2661
Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(h) FR-SP

600 1199 1798 2397

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(i) GR-EN

999 1997 2995 3993 4991

Time

0.2

0.4

0.6

0.8

1.0

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(j) GR-FR

999 1997 2995 3993 4991

Time

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(k) GR-IT

999 1997 2995 3993 4991

Time

0.2

0.4

0.6

0.8

1.0

1.2
Lo

ss
NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(l) GR-SP

802 1603 2404 3205 4006

Time

0.2

0.4

0.6

0.8

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(m) IT-EN

481 961 1441 1921 2401

Time

0.2

0.4

0.6

0.8

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(n) IT-FR

802 1603 2404 3205 4006

Time

0.2

0.4

0.6

0.8

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(o) IT-GR

802 1603 2404 3205 4006

Time

0.2

0.4

0.6

0.8

Lo
ss

NOGD
ROGD-u
ROGD-f
FESL-c
FESL-s

(p) IT-SP

Figure 4. The trend of loss with three baseline methods and the proposed methods on Reuter data by linear mapping. The smaller the cumulative
loss is, the better. The average cumulative loss at any time of our methods is smaller than the best of baseline methods.

Table 3 gives the accuracy results on Reuter datasets.
For Reuter datasets, we can see that FESL-c outperforms
other methods on 14 datasets, FESL-s gets the best on 7
datasets and NOGD gets 6 while ROGD-u gets 1. In Reuter
datasets, the period on new feature space is longer than that

in synthetic datasets so that NOGD can update itself to a
good model. Whereas ROGD-u updates itself with recovered
data, so the model will become worse when recovered error
accumulates. ROGD-f does not update itself, thus it performs
worst. Our two methods can take the advantage of NOGD

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 12

Table 4
Average cumulative loss at the last round (i.e., at time T1 + T2)
with its variance (comparison between methods by using linear

and nonlinear mapping) on RFID and Amazon. The less the
better. The best ones are bold. Note that no mapping is used in

NOGD. “-L” means using linear mapping, “-K” means using
non-linear mapping with RBF kernel.

Dataset NOGD ROGD-u ROGD-f FESL-c FESL-s
RFID-L 2.212±.111 1.311±.084 1.640±.136 1.322±.084 1.319±.087
RFID-K 2.212±.111 1.272±.142 1.637±.217 1.284±.142 1.281±.142
Amaz-L .0062±.0000 .0064±.0000 .0063±.0001 .0062±.0000 .0062±.0000
Amaz-K .0062±.0000 .0063±.0001 .0058±.0002 .0059±.0001 .0060±.0001

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

6.2

6.4

6.6

Lo
ss

10-3

NOGD ROGD-u ROGD-f FESL-c FESL-s

91 181 271 361

Time

1.0

1.5

2.0

2.5

3.0

Lo
ss

(a) RFID

2000 6000 10000

Time

6.2

6.4

6.6

Lo
ss

10-3

(b) Amazon

Figure 5. The trend of loss with three baseline methods and the proposed
methods on real data by linear mapping. The average cumulative loss at
any time of our methods is comparable to that of baseline methods. The
smaller the cumulative loss is, the better.

and ROGD-f and perform better than them.
As can be seen from Figure 4, the average cumulative

loss at any time of our methods is comparable to the best of
baseline methods. Specifically, at first, ROGD-u is better
than NOGD and our methods is comparable to ROGD-
u. Afterwards, with more and more data coming, NOGD
becomes better, then our methods is comparable to NOGD.
You may notice that NOGD is always worse than ROGD-u
in the experiments on synthetic data while on Reuter data
NOGD becomes better than ROGD-u after a few rounds.
This is because on synthetic data, we do not have enough
rounds to let all methods converge while on Reuter data,
large amounts of instances ensure the convergence of every
method. So when all the methods converge, we can see
that NOGD is better than other baseline methods since
it always receives the real instances while ROGD-u and
ROGD-f receive the recovered instances which may contain
recovered error. Moreover, FESL-s performs worse than FESL-
c in the beginning while afterwards, it becomes slightly better
than FESL-c. Lastly, ROGD-f always performs the worst
among all the approaches.

6.4 Experiments on Real Data
Finally, we conduct the experiments on two real datasets
that satisfy our assumptions. We want to emphasize that
we collected the real datasets by ourselves since our setting
of feature evolving is relatively novel so that the required
datasets are not widely available yet. We name the two real
datasets as “RFID” and “Amazon”.

For “RFID”, we use the RFID technique to collect the
real data. RFID technique is widely used to do moving
goods detection [46]. In our case, we want to utilize the
RFID technique to predict the location of the moving goods

attached by RFID tag. Concretely, we arranged several RFID
aerials which are used to receive the tag signals around
the indoor area. In each round, each RFID aerial received
the tag signals, then the goods with tag moved (only on
the horizontal direction), at the same time, we recorded the
goods’ coordinate. Before the aerials expired, we arranged
new aerials beside the old ones to avoid the situation without
aerials. Therefore, in this overlapping period, we have data
from both old and new feature spaces. After the old aerials
expired, we continue to use the new ones to receive signals.
Then we only have data from feature space S2. Therefore,
the RFID data we collect totally satisfy our assumptions. We
have released this dataset for our community to use. One can
find it in http://www.lamda.nju.edu.cn/data RFID.ashx.

For “Amazon”, we generate it based on the Ama-
zon product-user review datasets [47, 48] over “Movies
and TV” (original data description can be found in
http://jmcauley.ucsd.edu/data/amazon/links.html). We
want to predict each product’s quality from year 2006 to
2008 according to the ratings of its users. Therefore, each
instance represents a product and each feature of this instance
is its users’ rating. The label of each product is its quality
that is calculated by the weighted combination of each user’s
rating. The weight of each rating is calculated by the quality
of its user and the quality of each user is calculated by
the “helpfulness” (one of the attribute of the dataset) of the
user’s reviews. As time goes on, some users disappear, e.g.,
they signed out of their accounts, and some new users join.
Thus, the features will evolve, which means old features will
disappear and new feature will emerge. We find some period
where old and new features both exist and make this dataset
satisfy our assumption.

For “RFID”, the rounds number B in the overlapping
period is 40. Due to the time and device limitations, we only
collect 450 instances from feature space S1 and 450 instances
from feature space S2, so in this case, T1 is 490 and T2 is 450.
We set c to be 1 in step size 1/(c

√
t). For “Amazon”, B is 50,

T1 is 12, 118, T2 is 10, 907 and c is 0.5.
Table 4 shows the loss comparison between the methods

by using linear and nonlinear mapping. We learn nonlinear
mapping according to Section 4 by RBF kernel k(ui, uj) =
exp(−a‖ui − uj‖2) where a is set by 1/20 and the step
size µ in (3) is set by 1 for both “RFID” and “Amazon”.
As can be seen from Table 4, all the average cumulative
losses at time T1 + T2 of the four methods (except NOGD)
when learning nonlinear mapping is better than that when
learning linear mapping, which indicates that in the real
data, the relationship between the two feature spaces tend to
be nonlinear. We then present the loss tendency in Figure 5.
As can be seen from Figure 5, in the two real datasets, our
methods are always comparable to the best baselines at each
time step. The trends when learning nonlinear mapping are
similar to those when learning linear mapping, thus we do
not show them.

7 CONCLUSION

In this paper, we focus on a new setting: feature evolv-
able streaming learning, which extends our preliminary
research [49]. Our key observation is that in learning with
streaming data, old features could vanish and new ones

http://www.lamda.nju.edu.cn/data_RFID.ashx
http://jmcauley.ucsd.edu/data/amazon/links.html

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 13

could occur. To make the problem tractable, we assume
there is an overlapping period that contains samples from
both feature spaces. Then, we learn a mapping from new
features to old features, and in this way both the new and old
models can be used for prediction. In FESL-c, we ensemble
two predictions by learning weights adaptively. Theoretical
results show that the assistance of the old feature space can
improve the performance of learning with streaming data.
Furthermore, we propose FESL-s to dynamically select the
best model with better performance guarantee.

Actually, the assumption about overlapping period does
not always hold in reality since the old features sometimes do
not vanish simultaneously. Thus, a more realistic assumption
is that the old features vanish in an arbitrary way, for
example, different lifespans of sensors will cause different
vanishing of features. This is an interesting work for future
study. Another interesting future issue is to incorporate
an FESL-like approach into the recently proposed abductive
learning [50], a new paradigm which encompasses machine
learning and logical reasoning, to enable it handle changing
features and predicates.

ACKNOWLEDGEMENT

This research was supported by the National Key R&D
Program of China (2018YFB1004300), the National Science
Foundation of China (61921006, 61976112), and the Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization.

REFERENCES
[1] P. M. Domingos and G. Hulten, “Mining high-speed

data streams,” in Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2000, pp. 71–80.

[2] T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann,
“Indexing density models for incremental learning and
anytime classification on data streams,” in Proceedings
of the 12th International Conference on Extending Database
Technology, 2009, pp. 311–322.

[3] D. Leite, P. C. Jr., and F. Gomide, “Evolving granular clas-
sification neural networks,” in Proceedings of International
Joint Conference on Neural Networks, 2009, pp. 1736–1743.

[4] I. W. Tsang, A. Kocsor, and J. T. Kwok, “Simpler core vector
machines with enclosing balls,” in Proceedings of the 24th
International Conference on Machine Learning, 2007, pp. 911–
918.

[5] Z.-H. Zhou, “Learnware: On the future of machine learn-
ing,” Frontiers of Computer Science, vol. 10, pp. 589–590,
2016.

[6] P. Rai, H. D. III, and S. Venkatasubramanian, “Streamed
learning: One-pass svms,” in Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, 2009, pp.
1211–1216.

[7] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for on-demand classification of evolving data streams,”
IEEE Transactions on Knowledge and Data Engineering, vol. 18,
pp. 577–589, 2006.

[8] N. C. Oza, “Online bagging and boosting,” in Proceedings
of the IEEE International Conference on Systems, Man and
Cybernetics, 2005, pp. 2340–2345.

[9] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Pro-
ceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2003, pp. 226–235.

[10] H.-L. Nguyen, Y.-K. Woon, W. K. Ng, and L. Wan, “Het-
erogeneous ensemble for feature drifts in data streams,” in
Proceedings of the 16th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2012, pp. 1–12.

[11] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. R. Kangavari,
“Adapted one-versus-all decision trees for data stream
classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, pp. 624–637, 2009.

[12] P. Zhang, J. Li, P. Wang, B. J. Gao, X. Zhu, and L. Guo,
“Enabling fast prediction for ensemble models on data
streams,” in Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
2011, pp. 177–185.

[13] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy,
“Mining data streams: A review,” SIGMOD Record, vol. 34,
pp. 18–26, 2005.

[14] J. Gama and P. P. Rodrigues, “An overview on mining
data streams,” in Foundations of Computational Intelligence.
Springer, 2009, pp. 29–45.

[15] C. C. Aggarwal, “Data streams: An overview and scientific
applications,” in Scientific Data Mining and Knowledge
Discovery - Principles and Foundations. Springer, 2010, pp.
377–397.

[16] H.-L. Nguyen, Y.-K. Woon, and W. K. Ng, “A survey on
data stream clustering and classification,” Knowledge and
Information Systems, vol. 45, pp. 535–569, 2015.

[17] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,”
ACM Computing Surveys, vol. 46, no. 4, pp. 44:1–44:37, 2014.

[18] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A
survey on ensemble learning for data stream classification,”
ACM Computing Surveys, vol. 50, no. 2, pp. 23:1–23:36, 2017.

[19] P. Zhao, X. Wang, S. Xie, L. Guo, and Z.-H. Zhou,
“Distribution-free one-pass learning,” IEEE Transaction on
Knowledge and Data Engineering, 2019.

[20] K. Samina, K. Tehmina, and N. Shamila, “A survey of
feature selection and feature extraction techniques in
machine learning,” in Proceedings of Science and Information
Conference, 2014, pp. 372–378.

[21] G. Zhou, K. Sohn, and H. Lee, “Online incremental feature
learning with denoising autoencoders,” in Proceedings of
the 15th International Conference on Artificial Intelligence and
Statistics, 2012, pp. 1453–1461.

[22] M. Zinkevich, “Online convex programming and gener-
alized infinitesimal gradient ascent,” in Proceedings of the
20th International Conference on Machine Learning, 2003, pp.
928–936.

[23] S. Hoi, J. Wang, and P. Zhao, “LIBOL: A library for online
learning algorithms,” Journal of Machine Learning Research,
vol. 15, pp. 495–499, 2014.

[24] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and
Games. Cambridge University Press, 2006.

[25] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret
algorithms for online convex optimization,” Maching Learn-
ing, vol. 69, pp. 169–192, 2007.

[26] S. Shalev-Shwartz, “Online learning and online convex
optimization,” Foundations and Trends in Machine Learning,
vol. 4, pp. 107–194, 2012.

[27] S.-Y. Li, Y. Jiang, and Z.-H. Zhou, “Partial multi-view
clustering,” in Proceedings of the 28th AAAI Conference on
Artificial Intelligence, 2014, pp. 1968–1974.

[28] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,”
ArXiv e-prints, vol. arXiv:1304.5634, 2013.

[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, pp.
1345–1359, 2010.

[30] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng, “Self-
taught learning: Transfer learning from unlabeled data,” in
Proceedings of the 24th International Conference on Machine
Learning, 2007, pp. 759–766.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 14

[31] S. U. Guan and S. Li, “Incremental learning with respect to
new incoming input attributes,” Neural Processing Letters,
vol. 14, pp. 241–260, 2001.

[32] P. Zhao, S. Hoi, J. Wang, and B. Li, “Online transfer
learning,” Artificial Intelligence, vol. 216, pp. 76–102, 2014.

[33] Y. Yan, Q. Wu, M. Tan, M. K. N., H. Min, and I. W. Tsang,
“Online heterogeneous transfer by hedge ensemble of offline
and online decisions,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 7, pp. 3252–3263, 2018.

[34] C. Yang, J. Ding, Y. Jin, and T. Chai, “Incremental data-
driven optimization of complex systems in nonstationary
environments,” Science China Information Sciences, vol. 61,
no. 12, p. 129205, 2018.

[35] C. Hou and Z.-H. Zhou, “One-pass learning with incre-
mental and decremental features,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 11, pp.
2776–2792, 2018.

[36] B. M. G. Kibria, “Bayesian statistics and marketing,” Tech-
nometrics, vol. 49, p. 230, 2007.

[37] J. Read, A. Bifet, G. Holmes, and B. Pfahringer, “Streaming
multi-label classification,” in Proceedings of the 2nd Workshop
on Applications of Pattern Analysis, 2011, pp. 19–25.

[38] S. M. Stigler, “Gauss and the invention of least squares,”
The Annals of Statistics, pp. 465–474, 1981.

[39] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learn-
ing with kernels,” IEEE Transactions on Signal Processing,
vol. 52, pp. 2165–2176, 2004.

[40] Z.-H. Zhou, Ensemble methods: Foundations and algorithms.
CRC press, 2012.

[41] T. Sun and Z.-H. Zhou, “Structural diversity for decision
tree ensemble learning,” Frontiers of Computer Science,
vol. 12, no. 3, pp. 560–570, 2018.

[42] Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, vol. 55, pp. 119–139,
1997.

[43] W. Hoeffding, “Probability inequalities for sums of
bounded random variables,” Journal of the American Sta-
tistical Association, vol. 58, pp. 13–30, 1963.

[44] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “LIBLINEAR: A library for large linear classification,”
Journal of Machine Learning Research, vol. 9, pp. 1871–1874,
2008.

[45] M.-R. Amini, N. Usunier, and C. Goutte, “Learning from
multiple partially observed views - an application to
multilingual text categorization,” in Advances in Neural
Information Processing Systems 22, 2009, pp. 28–36.

[46] C. Wang, L. Xie, W. Wang, T. Xue, and S. Lu, “Moving tag
detection via physical layer analysis for large-scale RFID
systems,” in Proceedings of the 35th Annual IEEE International
Conference on Computer Communications, 2016, pp. 1–9.

[47] J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel,
“Image-based recommendations on styles and substitutes,”
in Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2015,
pp. 43–52.

[48] R. He and J. McAuley, “Ups and downs: Modeling the vi-
sual evolution of fashion trends with one-class collaborative
filtering,” in Proceedings of the 25th International Conference
on World Wide Web, 2016, pp. 507–517.

[49] B.-J. Hou, L. Zhang, and Z.-H. Zhou, “Learning with
feature evolvable streams,” in Advances in Neural Information
Processing Systems 30, 2017, pp. 1417–1427.

[50] Z.-H. Zhou, “Abductive learning: towards bridging ma-
chine learning and logical reasoning,” Science China Infor-
mation Sciences, vol. 62, no. 7, p. 76101, 2019.

Bo-Jian Hou is a PhD student in the Department
of Computer Science & Technology of Nanjing
University. He received the BSc degree from
Nanjing University, China, in 2014. He is currently
working toward the PhD degree in computer
science at Nanjing University. His main research
interests include machine learning and data min-
ing. He won the National Scholarship in 2017.
He also won the Program A for Outstanding
PhD Candidate of Nanjing University and CCFAI
Outstanding Student Paper Award in 2019.

Lijun Zhang received the BS and PhD degrees
in software engineering and computer science
from Zhejiang University, China, in 2007 and
2012, respectively. He is currently an associate
professor of the Department of Computer Sci-
ence and Technology, Nanjing University, China.
Prior to joining Nanjing University, he was a
postdoctoral researcher at the Department of
Computer Science and Engineering, Michigan
State University. His research interests include
machine learning, optimization, information re-

trieval, and data mining. He is a member of the IEEE.

Zhi-Hua Zhou (S’00-M’01-SM’06-F’13) received
the BSc, MSc and PhD degrees in computer
science from Nanjing University, China, in 1996,
1998 and 2000, respectively, all with the highest
honors. He joined the Department of Computer
Science & Technology at Nanjing University as
an Assistant Professor in 2001, and is currently
Professor, Head of the Department of Computer
Science and Technology, and Dean of the School
of Artificial Intelligence; he is also the Founding
Director of the LAMDA group. His research in-

terests are mainly in artificial intelligence, machine learning and data
mining. He has authored the books Ensemble Methods: Foundations
and Algorithms (2012), Evolutionary Learning: Advances in Theories and
Algorithms (2019), Machine Learning (2016, in Chinese), and published
more than 150 papers in top-tier international journals or conference pro-
ceedings. He has received various awards/honors including the National
Natural Science Award of China, the IEEE Computer Society Edward
J. McCluskey Technical Achievement Award, the PAKDD Distinguished
Contribution Award, the IEEE ICDM Outstanding Service Award, the
Microsoft Professorship Award, etc. He also holds 24 patents. He is the
Editor-in-Chief of the Frontiers of Computer Science, Associate Editor-
in-Chief of the Science China Information Sciences, Action or Associate
Editor of the Machine Learning, IEEE Transactions on Pattern Analysis
and Machine Intelligence, ACM Transactions on Knowledge Discovery
from Data , etc. He served as Associate Editor-in-Chief for Chinese
Science Bulletin (2008-2014), Associate Editor for IEEE Transactions on
Knowledge and Data Engineering (2008-2012), IEEE Transactions on
Neural Networks and Learning Systems (2014-2017), ACM Transactions
on Intelligent Systems and Technology (2009-2017), Neural Networks
(2014-2016), etc. He founded ACML (Asian Conference on Machine
Learning), served as Advisory Committee member for IJCAI (2015-2016),
Steering Committee member for ICDM, PAKDD and PRICAI, and Chair of
various conferences such as General co-chair of ICDM 2016 and PAKDD
2014, Program co-chair of AAAI 2019 and SDM 2013, and Area chair of
NeurIPS, ICML, AAAI, IJCAI, KDD, etc. He was the Chair of the IEEE CIS
Data Mining Technical Committee (2015-2016), the Chair of the CCF-AI
(2012-2019), and the Chair of the CAAI Machine Learning Technical
Committee (2006-2015). He is a foreign member of the Academy of
Europe, and a Fellow of the ACM, AAAI, AAAS, IEEE, IAPR, IET/IEE,
CCF, and CAAI.

	Introduction
	Related Work
	Preliminaries
	Our Proposed Approach
	Basic Idea with Linear and Nonlinear Mapping
	Weighted Combination
	Dynamic Selection

	Detailed Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Experiments
	Compared Approaches and Settings
	Experiments on Synthetic Data
	Experiments on Reuter Data
	Experiments on Real Data

	Conclusion
	Biographies
	Bo-Jian Hou
	Lijun Zhang
	Zhi-Hua Zhou

