

1. Contribution

- (FESL), to model our problem;
- techniques to solve FESL;
- synthetic and real data sets.

_												
	Dataset	n	d_1	d_2	Dataset	n	d_1	d_2	Dataset	n	d_1	d_2
	Australian	690	42	29	r.EN-FR	18,758	21,531	24,892	r.GR-IT	29,953	34,279	15,505
	Credit-a	653	15	10	r.EN-GR	18,758	21,531	34,215	r.GR-SP	29,953	34,279	11,547
	Credit-g	1,000	20	14	r.EN-IT	18,758	21,531	15,506	r.IT-EN	24,039	15,506	21,517
	Diabetes	768	8	5	r.EN-SP	18,758	21,531	11,547	r.IT-FR	24,039	15,506	24,892
	DNASVT	19 ⁴ ¶€	18C	125	r.FR-EN	26,648	24,893	21,531	r.IT-GR	24,039	15,506	34,278
	German	1,000	59	41	r.FR-GR	26,648	24,893	34,987	r.USI	24,039	15,506	11,547
	Kr-vs-kp	3,196	36	25	r.FR-IT	26,648	24,893	15,503	r.SP-EN	12,342	11,547	21,530
	Splice	3,175	60	42	r.FR-SP	26,648	24,893	11,547	r.SP-FR	12,342	11,547	24,892
	Svmguide3	1,284	22	15	r.GR-EN	29,953	34,279	21,531	r.SP-GR	12,342	11,547	34,262
	RFID	R ²⁴ 9	78	72	r.GR-FR	29,953	34,279	24,892	r.SP-IT	12,342	11,547	15,500

We want to emphasize that we collected one real dataset (e.g., RFID) by ourselves since the required datasets are not widely available yet.

Compared Methods:

NOGD: OGD algorithm will be invoked from scratch. **ROGD-u**: the algorithm utilizes the classifier learned from feature space S_1 to do predictions on the recovered data, keeps updating. **ROGD-f**: resembles ROGD-u, but do not update.

Learning with Feature Evolvable Streams

Bo-Jian Hou, Lijun Zhang, Zhi-Hua Zhou

LAMDA Group, Nanjing University

E2, The Accuracy Results: Synthetic											
Dataset	NOGD	ROGD-u	ROGD-f	FESL-c							
australian	$.767 \pm .009$.849±.009	$.809 \pm .025$.849±.009							
credit-a	$.811 \pm .006$	$.826 \pm .018$	$.785 {\pm} .051$	$.827 \pm .014$							
credit-g	$.659 \pm .010$.733±.006	$.716 \pm .011$	$.733 {\pm} .006$							
diabetes	$.650 \pm .002$	$.652 {\pm} .009$	$.651 \pm .006$	$.652 {\pm} .007$							
dna	$.610 \pm .013$	$.691 \pm .023$	$.608 \pm .064$	$.691 \pm .023$							
german	$.684 \pm .006$	$.700 \pm .002$	$.700 \pm .002$	$.700 \pm .001$							
kr-vs-kp	$.612 \pm .005$	$.621 \pm .036$	$.538 {\pm} .024$	$.626 \pm .028$							
splice	$.568 {\pm} .005$	$.612 {\pm} .022$	$.567 \pm .057$	$.612 {\pm} .022$							
svmguide3	$.680 {\pm} .010$	$.779 {\pm} .010$	$.748 {\pm} .012$.779±.010							

For synthetic datasets, FESL-s outperforms other methods on 8 datasets, FESL-c gets the best on 5. Our methods can follow the best baseline method or even outperform it. For Reuter datasets, FESL-c outperforms other methods on 17 datasets, FESL-s gets the best on 9. Our two methods can take the advantage of NOGD and ROGD-f and perform better than them.

6. Conclusion

1. A new setting: feature evolvable streaming learning. **2.** Key observation: in learning with streaming data, old features vanish and new ones occur. **3.** We assume there is an overlapping period that contains samples from both feature spaces.

r.IT-EN

r.IT-FR

r.IT-GR

r.IT-SP

r.SP-EN

r.SP-FR

r.SP-GR

r.SP-IT

 $.854 \pm .00$

 $.863 \pm .00$

 $.849 \pm .00$

 $.876 \pm .005$

.928±.002

.926±

.856-

.864+

.926-

.873

.928±.003

.**002**

 730 ± 020

 833 ± 042

 $.826 \pm .005$

 $.861 \pm .005$

 $.854 \pm .003$

 $.862 \pm .003$

 $.846 \pm .004$

 $-839\pm.006$

 $.924 \pm .001$

.878±.012

 $.873 \pm .013$

 $.927 \pm .002$

